Luciano Pereira da Silva, Marcio Augusto Villela Pinto, Luciano Kiyoshi Araki
{"title":"Higher-order methods for the Poisson equation obtained with geometric multigrid and completed Richardson extrapolation","authors":"Luciano Pereira da Silva, Marcio Augusto Villela Pinto, Luciano Kiyoshi Araki","doi":"10.1007/s40314-024-02902-4","DOIUrl":null,"url":null,"abstract":"<p>The study presented in this paper consists of a grouping of methods for determining numerical solutions to the Poisson equation (heat diffusion) with high accuracy. We compare the results obtained with classical second-order finite difference method (CDS-2) with fourth-order compact (CCDS-4) and the exponential methods (EXP-4). We accelerate the convergence of the numerical solutions using the geometric multigrid method and then apply the completed Richardson extrapolation (CRE) across the full temperature field. This proposed clustering determined solutions with two orders of accuracy higher for all three methods presented in the study, in addition to recommending the EXP-4 method together with CRE for its accuracy and low computational effort. The evidence for our results was established through qualitative verification, through the assessment of orders of accuracy of the discretization error; and quantitative verification, through the analysis of CPU time and complexity order of the numerical solutions calculated. The numerical solutions of sixth-order of accuracy obtained after proposed CRE methodology using the CCDS-4 and EXP-4 methods are recognized as benchmark solutions for these two classes of methods.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02902-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study presented in this paper consists of a grouping of methods for determining numerical solutions to the Poisson equation (heat diffusion) with high accuracy. We compare the results obtained with classical second-order finite difference method (CDS-2) with fourth-order compact (CCDS-4) and the exponential methods (EXP-4). We accelerate the convergence of the numerical solutions using the geometric multigrid method and then apply the completed Richardson extrapolation (CRE) across the full temperature field. This proposed clustering determined solutions with two orders of accuracy higher for all three methods presented in the study, in addition to recommending the EXP-4 method together with CRE for its accuracy and low computational effort. The evidence for our results was established through qualitative verification, through the assessment of orders of accuracy of the discretization error; and quantitative verification, through the analysis of CPU time and complexity order of the numerical solutions calculated. The numerical solutions of sixth-order of accuracy obtained after proposed CRE methodology using the CCDS-4 and EXP-4 methods are recognized as benchmark solutions for these two classes of methods.
期刊介绍:
Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics).
The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.