Asymptotic analysis of geometrically nonlinear beam vibrations: Kirchhoff and Bolotin equations

Igor V. Andrianov, Steve G. Koblik
{"title":"Asymptotic analysis of geometrically nonlinear beam vibrations: Kirchhoff and Bolotin equations","authors":"Igor V. Andrianov, Steve G. Koblik","doi":"10.1002/zamm.202400341","DOIUrl":null,"url":null,"abstract":"The paper analyzes various approximate models of geometrically nonlinear vibrations of a beam. In practice, simplified equations are often based on the quasi‐static Kirchhoff hypothesis—neglecting axial inertia. This hypothesis is justified with the prescribed end‐displacements of the beam in the axial direction. Under dead loading, quasi‐static Kirchhoff hypothesis results in a linear equation. The corresponding approximate equations obtained in this paper are based on the asymptotic procedure. The ratio of bending stiffness to reduced tensile/compressive stiffness is taken as a small parameter. Axial inertia is taken into account in the equation of the first approximation. Introduced by V.V. Bolotin concept “nonlinear inertia” is discussed. The most common errors in using the quasi‐static Kirchhoff hypothesis are analyzed.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper analyzes various approximate models of geometrically nonlinear vibrations of a beam. In practice, simplified equations are often based on the quasi‐static Kirchhoff hypothesis—neglecting axial inertia. This hypothesis is justified with the prescribed end‐displacements of the beam in the axial direction. Under dead loading, quasi‐static Kirchhoff hypothesis results in a linear equation. The corresponding approximate equations obtained in this paper are based on the asymptotic procedure. The ratio of bending stiffness to reduced tensile/compressive stiffness is taken as a small parameter. Axial inertia is taken into account in the equation of the first approximation. Introduced by V.V. Bolotin concept “nonlinear inertia” is discussed. The most common errors in using the quasi‐static Kirchhoff hypothesis are analyzed.
几何非线性梁振动的渐近分析:基尔霍夫方程和博洛廷方程
本文分析了梁的几何非线性振动的各种近似模型。在实践中,简化方程通常基于准静态基尔霍夫假设,忽略了轴向惯性。这一假设的依据是梁在轴向的规定端部位移。在死载荷下,准静态基尔霍夫假说会产生一个线性方程。本文中获得的相应近似方程是基于渐近程序。弯曲刚度与拉伸/压缩刚度的比值被视为一个小参数。第一近似方程中考虑了轴惯性。V.V. Bolotin 提出的 "非线性惯性 "概念得到了讨论。分析了使用准静态基尔霍夫假设时最常见的错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信