Re‐derivation and mathematical analysis for linear peridynamics model for arbitrary Poisson ratio's material

Shangyuan Zhang, Yufeng Nie
{"title":"Re‐derivation and mathematical analysis for linear peridynamics model for arbitrary Poisson ratio's material","authors":"Shangyuan Zhang, Yufeng Nie","doi":"10.1002/zamm.202100413","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the modeling and mathematical analysis of linear peridynamic model for arbitrary Poisson ratio's material. Based on the fundamental laws of dynamics, we re‐derive the bond‐based peridynamic model for anisotropic materials by relaxing certain assumptions. Through this process, we draw several significant conclusions, such as the relationship between the equivalent strain energy density hypothesis and the convergence of the peridynamic operator to the classical Navier operator. Additionally, the well‐posedness of time‐dependent peridynamic equations of motion is established. Finally, some necessary conditions for the material stability of anisotropic material are given.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202100413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the modeling and mathematical analysis of linear peridynamic model for arbitrary Poisson ratio's material. Based on the fundamental laws of dynamics, we re‐derive the bond‐based peridynamic model for anisotropic materials by relaxing certain assumptions. Through this process, we draw several significant conclusions, such as the relationship between the equivalent strain energy density hypothesis and the convergence of the peridynamic operator to the classical Navier operator. Additionally, the well‐posedness of time‐dependent peridynamic equations of motion is established. Finally, some necessary conditions for the material stability of anisotropic material are given.
任意泊松比材料的线性周流体力学模型的再推导和数学分析
本文关注任意泊松比材料的线性周向动力学模型的建模和数学分析。在动力学基本定律的基础上,我们通过放宽某些假设,重新推导了各向异性材料的基于键的周动力学模型。通过这一过程,我们得出了一些重要结论,如等效应变能密度假设与周动态算子收敛于经典纳维算子之间的关系。此外,我们还建立了与时间相关的周动态运动方程的好拟性。最后,给出了各向异性材料稳定性的一些必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信