Hopping Transfer Optimizes Avalanche Multiplication in Molybdenum Disulfide

Xiaofan Cai, Ruichang Chen, Xu Gao, Meili Yuan, Haixia Hu, Hang Yin, Yuanyuan Qu, Yang Tan, Feng Chen
{"title":"Hopping Transfer Optimizes Avalanche Multiplication in Molybdenum Disulfide","authors":"Xiaofan Cai, Ruichang Chen, Xu Gao, Meili Yuan, Haixia Hu, Hang Yin, Yuanyuan Qu, Yang Tan, Feng Chen","doi":"arxiv-2409.07677","DOIUrl":null,"url":null,"abstract":"Recently, avalanche multiplication has been observed in TMDC-based FETs,\nenhancing sensor performance with high sensitivity. However, the high voltage\nrequired for operation can damage the FETs, making it crucial to reduce the\nbreakdown voltage for effective sensing applications. Here, we demonstrate that\nthe utilization of hopping transfer induced by high-density defects can\neffectively reduce the breakdown voltage in TMDCs FETs. By substituting oxygen\natoms for sulfur atoms in a monolayer of MoS2, we create MoS2-xOx, with x\ncarefully adjusted within the range of 0 to 0.51. Oxygen doping reduces the\nbandgap of TMDCs and enhances ion collision rates. Moreover, higher levels of\noxygen doping (x > 0.41) in MoS2-xOx exhibit nearest-neighbor hopping behavior,\nleading to a significant enhancement in electron mobility. These improvements\nresult in a decrease in the breakdown voltage of avalanche multiplication from\n26.2 V to 12.6 V. Additionally, we propose avalanche multiplication in MoS2-xOx\nas an efficient sensing mechanism to overcome the limitations of gas sensing.\nThe MoS2-xOx sensors display an ultra-high response to NO2 gas in the air, with\na response of 5.8x103 % to NO2 gas of 50 ppb at room temperature, which is\nnearly two orders of magnitude higher than resistance-type gas detectors based\non TMDCs. This work demonstrates that hopping transfer induced by high-density\noxygen defects can effectively decrease the breakdown voltage of MoS2-xOx FETs,\nenhancing avalanche multiplication and serving as a promising mechanism for\nultrasensitive gas detection.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, avalanche multiplication has been observed in TMDC-based FETs, enhancing sensor performance with high sensitivity. However, the high voltage required for operation can damage the FETs, making it crucial to reduce the breakdown voltage for effective sensing applications. Here, we demonstrate that the utilization of hopping transfer induced by high-density defects can effectively reduce the breakdown voltage in TMDCs FETs. By substituting oxygen atoms for sulfur atoms in a monolayer of MoS2, we create MoS2-xOx, with x carefully adjusted within the range of 0 to 0.51. Oxygen doping reduces the bandgap of TMDCs and enhances ion collision rates. Moreover, higher levels of oxygen doping (x > 0.41) in MoS2-xOx exhibit nearest-neighbor hopping behavior, leading to a significant enhancement in electron mobility. These improvements result in a decrease in the breakdown voltage of avalanche multiplication from 26.2 V to 12.6 V. Additionally, we propose avalanche multiplication in MoS2-xOx as an efficient sensing mechanism to overcome the limitations of gas sensing. The MoS2-xOx sensors display an ultra-high response to NO2 gas in the air, with a response of 5.8x103 % to NO2 gas of 50 ppb at room temperature, which is nearly two orders of magnitude higher than resistance-type gas detectors based on TMDCs. This work demonstrates that hopping transfer induced by high-density oxygen defects can effectively decrease the breakdown voltage of MoS2-xOx FETs, enhancing avalanche multiplication and serving as a promising mechanism for ultrasensitive gas detection.
跳转优化了二硫化钼中的雪崩倍增效应
最近,在基于 TMDC 的场效应晶体管中发现了雪崩倍增现象,从而提高了传感器的性能和灵敏度。然而,工作时所需的高电压会损坏场效应晶体管,因此降低击穿电压对有效传感应用至关重要。在这里,我们证明了利用高密度缺陷诱导的跳变转移可以有效降低 TMDCs FET 的击穿电压。通过用氧原子取代单层 MoS2 中的硫原子,我们创造出了 MoS2-xOx,其 x 值在 0 至 0.51 范围内进行了适当调整。氧掺杂降低了 TMDC 的带隙,提高了离子碰撞率。此外,MoS2-xOx 中较高的氧掺杂水平(x > 0.41)会表现出近邻跳跃行为,从而显著提高电子迁移率。这些改进使得雪崩倍增的击穿电压从 26.2 V 下降到 12.6 V。MoS2-xOx 传感器对空气中的二氧化氮气体具有超高响应,室温下对 50 ppb 二氧化氮气体的响应为 5.8x103%,比基于 TMDC 的电阻型气体探测器高出近两个数量级。这项研究表明,高密度氧缺陷诱导的跳变转移能有效降低 MoS2-xOx FET 的击穿电压,增强雪崩倍增效应,是超灵敏气体检测的一种可行机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信