Modelling of nucleate pool boiling on coated substrates using machine learning and empirical approaches

Vijay Kuberan, Sateesh Gedupudi
{"title":"Modelling of nucleate pool boiling on coated substrates using machine learning and empirical approaches","authors":"Vijay Kuberan, Sateesh Gedupudi","doi":"arxiv-2409.07811","DOIUrl":null,"url":null,"abstract":"Surface modification results in substantial improvement in pool boiling heat\ntransfer. Thin film-coated and porous-coated substrates, through different\nmaterials and techniques, significantly boost heat transfer through increased\nnucleation due to the presence of micro-cavities on the surface. The existing\nmodels and empirical correlations for boiling on these coated surfaces are\nconstrained by specific operating conditions and parameter ranges and are hence\nlimited by their prediction accuracy. This study focuses on developing an\naccurate and reliable Machine Learning (ML) model by effectively capturing the\nactual relationship between the influencing variables. Various ML algorithms\nhave been evaluated on the thin film-coated and porous-coated datasets amassed\nfrom different studies. The CatBoost model demonstrated the best prediction\naccuracy after cross-validation and hyperparameter tuning. For the optimized\nCatBoost model, SHAP analysis has been carried out to identify the prominent\ninfluencing parameters and interpret the impact of parameter variation on the\ntarget variable. This model interpretation clearly justifies the decisions\nbehind the model predictions, making it a robust model for the prediction of\nnucleate boiling Heat Transfer Coefficient (HTC) on coated surfaces. Finally,\nthe existing empirical correlations have been assessed, and new correlations\nhave been proposed to predict the HTC on these surfaces with the inclusion of\ninfluential parameters identified through SHAP interpretation. Keywords: Pool boiling, Thin film-coated, Porous-coated, Heat transfer\ncoefficient, Machine learning, CatBoost, SHAP analysis","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Surface modification results in substantial improvement in pool boiling heat transfer. Thin film-coated and porous-coated substrates, through different materials and techniques, significantly boost heat transfer through increased nucleation due to the presence of micro-cavities on the surface. The existing models and empirical correlations for boiling on these coated surfaces are constrained by specific operating conditions and parameter ranges and are hence limited by their prediction accuracy. This study focuses on developing an accurate and reliable Machine Learning (ML) model by effectively capturing the actual relationship between the influencing variables. Various ML algorithms have been evaluated on the thin film-coated and porous-coated datasets amassed from different studies. The CatBoost model demonstrated the best prediction accuracy after cross-validation and hyperparameter tuning. For the optimized CatBoost model, SHAP analysis has been carried out to identify the prominent influencing parameters and interpret the impact of parameter variation on the target variable. This model interpretation clearly justifies the decisions behind the model predictions, making it a robust model for the prediction of nucleate boiling Heat Transfer Coefficient (HTC) on coated surfaces. Finally, the existing empirical correlations have been assessed, and new correlations have been proposed to predict the HTC on these surfaces with the inclusion of influential parameters identified through SHAP interpretation. Keywords: Pool boiling, Thin film-coated, Porous-coated, Heat transfer coefficient, Machine learning, CatBoost, SHAP analysis
利用机器学习和经验方法建立涂层基底上核酸池沸腾模型
表面改性可显著改善池沸传热。薄膜涂层和多孔涂层基质采用不同的材料和技术,由于表面存在微空腔而增加了成核,从而显著提高了传热效果。在这些涂层表面上沸腾的现有模型和经验相关性受到特定工作条件和参数范围的限制,其预测精度也受到限制。本研究的重点是通过有效捕捉影响变量之间的实际关系,开发准确可靠的机器学习(ML)模型。在不同研究积累的薄膜涂层和多孔涂层数据集上对各种 ML 算法进行了评估。经过交叉验证和超参数调整后,CatBoost 模型显示出最佳预测精度。对优化后的 CatBoost 模型进行了 SHAP 分析,以确定突出的影响参数,并解释参数变化对目标变量的影响。这种模型解释清楚地证明了模型预测背后的决策,使其成为预测涂层表面核沸腾传热系数(HTC)的可靠模型。最后,对现有的经验相关性进行了评估,并提出了新的相关性来预测这些表面上的 HTC,其中包含了通过 SHAP 解释确定的影响参数。关键词池沸 薄膜涂层 多孔涂层 传热系数 机器学习 CatBoost SHAP 分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信