Minimization problem solvable by weighted m-weak group inverse

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Dijana Mosić, Predrag S. Stanimirović, Lev A. Kazakovtsev
{"title":"Minimization problem solvable by weighted m-weak group inverse","authors":"Dijana Mosić, Predrag S. Stanimirović, Lev A. Kazakovtsev","doi":"10.1007/s12190-024-02215-z","DOIUrl":null,"url":null,"abstract":"<p>The first point of this research is to develop several representations for the weighted <i>m</i>-weak group inverse. Secondly, we consider the minimization problem <span>\\(\\min \\Vert W(AW)^{m+1}X-(WA)^mB\\Vert _F\\)</span>, <span>\\(m\\ge 1\\)</span> in the Frobenius norm, subject to constraint <span>\\(\\mathcal{R}(X)\\subseteq \\mathcal{R}((AW)^k)\\)</span>, where the exponent <i>k</i> is defined as the maximum between indices of <i>AW</i> and <i>WA</i>. The solution is expressed in terms of weighted <i>m</i>-weak group inverse. Particular settings of obtained results recover several known results in the literature. A representation in the form of an appropriate outer inverse of <i>WAW</i> with given image and kernel is obtained.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02215-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The first point of this research is to develop several representations for the weighted m-weak group inverse. Secondly, we consider the minimization problem \(\min \Vert W(AW)^{m+1}X-(WA)^mB\Vert _F\), \(m\ge 1\) in the Frobenius norm, subject to constraint \(\mathcal{R}(X)\subseteq \mathcal{R}((AW)^k)\), where the exponent k is defined as the maximum between indices of AW and WA. The solution is expressed in terms of weighted m-weak group inverse. Particular settings of obtained results recover several known results in the literature. A representation in the form of an appropriate outer inverse of WAW with given image and kernel is obtained.

可通过加权 m 弱群逆求解的最小化问题
这项研究的第一点是为加权 m 弱群逆建立几个表示法。其次,我们考虑最小化问题 \(\min \Vert W(AW)^{m+1}X-(WA)^mB\Vert _F\), \(m\ge 1\) in the Frobenius norm, subject to constraint \(\mathcal{R}(X)\subseteq \mathcal{R}((AW)^k)\), 其中指数 k 被定义为 AW 和 WA 的指数之间的最大值。解用加权 m 弱群逆表示。所获结果的特定设置恢复了文献中的几个已知结果。在给定图像和核的情况下,可以用适当的 WAW 外逆形式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信