Highly Efficient and Stable Perovskite Solar Cells via MultiFunctional Curcumin Modified Buried Interface

Xianhu Wu, Jieyu Bi, Guanglei Cu, Nian Liu, Gaojie Xia, Jilong Sun, Jiaxin Jiang, Ning Lu, Ping Li, Chunyi Zhao, Zewen Zuo, Min Gu
{"title":"Highly Efficient and Stable Perovskite Solar Cells via MultiFunctional Curcumin Modified Buried Interface","authors":"Xianhu Wu, Jieyu Bi, Guanglei Cu, Nian Liu, Gaojie Xia, Jilong Sun, Jiaxin Jiang, Ning Lu, Ping Li, Chunyi Zhao, Zewen Zuo, Min Gu","doi":"arxiv-2408.17167","DOIUrl":null,"url":null,"abstract":"The buried interface between the electron transport layer and the perovskite\nlayer suffers from severe interface defects and imperfect energy level\nalignment. To address this issue, this study employs a multifunctional organic\nmolecule, curcumin, to modify the interface between SnO2 and the perovskite\nlayer. The functional groups on curcumin effectively passivate the defects on\nboth sides of the interface, reducing -OH and oxygen vacancy defects on the\nSnO2 surface and passivating uncoordinated Pb2+ in the perovskite layer. This\nresults in a more compatible energy level alignment and lower defect density at\nthe interface, enhancing carrier transport across it. Consequently, the devices\nbased on curcumin achieve an impressive champion power conversion efficiency\n(PCE) of 24.46%, compared to 22.03% for control devices. This work demonstrates\na simple, green, hydrophobic, and efficient molecular modification method for\nthe buried interface, laying the foundation for the development of\nhigh-performance and stable perovskite solar cells.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The buried interface between the electron transport layer and the perovskite layer suffers from severe interface defects and imperfect energy level alignment. To address this issue, this study employs a multifunctional organic molecule, curcumin, to modify the interface between SnO2 and the perovskite layer. The functional groups on curcumin effectively passivate the defects on both sides of the interface, reducing -OH and oxygen vacancy defects on the SnO2 surface and passivating uncoordinated Pb2+ in the perovskite layer. This results in a more compatible energy level alignment and lower defect density at the interface, enhancing carrier transport across it. Consequently, the devices based on curcumin achieve an impressive champion power conversion efficiency (PCE) of 24.46%, compared to 22.03% for control devices. This work demonstrates a simple, green, hydrophobic, and efficient molecular modification method for the buried interface, laying the foundation for the development of high-performance and stable perovskite solar cells.
通过多功能姜黄素修饰的埋藏界面实现高效稳定的 Perovskite 太阳能电池
电子传输层和包覆层之间的埋藏界面存在严重的界面缺陷和不完美的能级对齐。为了解决这一问题,本研究采用了一种多功能有机分子姜黄素来修饰二氧化锡和过氧化物层之间的界面。姜黄素上的官能团有效地钝化了界面两侧的缺陷,减少了二氧化锡表面的-OH和氧空位缺陷,并钝化了包晶层中未配位的Pb2+。这使得能级排列更加协调,界面上的缺陷密度更低,从而增强了载流子在界面上的传输。因此,基于姜黄素的器件实现了惊人的冠军功率转换效率(PCE),达到 24.46%,而对照器件仅为 22.03%。这项工作展示了一种简单、绿色、疏水和高效的埋藏界面分子修饰方法,为开发高性能和稳定的过氧化物太阳能电池奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信