Frequency-domain Parallel Computing Using Single On-Chip Nonlinear Acoustic-wave Device

Jun Ji, Zichen Xi, Bernadeta R. Srijanto, Ivan I. Kravchenko, Ming Jin, Wenjie Xiong, Linbo Shao
{"title":"Frequency-domain Parallel Computing Using Single On-Chip Nonlinear Acoustic-wave Device","authors":"Jun Ji, Zichen Xi, Bernadeta R. Srijanto, Ivan I. Kravchenko, Ming Jin, Wenjie Xiong, Linbo Shao","doi":"arxiv-2409.02689","DOIUrl":null,"url":null,"abstract":"Multiply-accumulation (MAC) is a crucial computing operation in signal\nprocessing, numerical simulations, and machine learning. This work presents a\nscalable, programmable, frequency-domain parallel computing leveraging\ngigahertz (GHz)-frequency acoustic-wave nonlinearities. By encoding data in the\nfrequency domain, a single nonlinear acoustic-wave device can perform a billion\narithmetic operations simultaneously. A single device with a footprint of 0.03\nmm$^2$ on lithium niobate (LN) achieves 0.0144 tera floating-point operations\nper second (TFLOPS), leading to a computing area density of 0.48 TFLOPS/mm$^2$\nand a core power efficiency of 0.14 TFLOPS/Watt. As applications, we\ndemonstrate multiplications of two 16-by-16 matrices and convolutional imaging\nprocessing of 128-by-128-pixel photos. Our technology could find versatile\napplications in near-sensor signal processing and edge computing.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiply-accumulation (MAC) is a crucial computing operation in signal processing, numerical simulations, and machine learning. This work presents a scalable, programmable, frequency-domain parallel computing leveraging gigahertz (GHz)-frequency acoustic-wave nonlinearities. By encoding data in the frequency domain, a single nonlinear acoustic-wave device can perform a billion arithmetic operations simultaneously. A single device with a footprint of 0.03 mm$^2$ on lithium niobate (LN) achieves 0.0144 tera floating-point operations per second (TFLOPS), leading to a computing area density of 0.48 TFLOPS/mm$^2$ and a core power efficiency of 0.14 TFLOPS/Watt. As applications, we demonstrate multiplications of two 16-by-16 matrices and convolutional imaging processing of 128-by-128-pixel photos. Our technology could find versatile applications in near-sensor signal processing and edge computing.
利用单芯片非线性声波器件进行频域并行计算
乘法累加(MAC)是信号处理、数值模拟和机器学习中的一项重要计算操作。这项研究利用千兆赫兹(GHz)频率的声波非线性,提出了可升级、可编程的频域并行计算。通过对频域数据进行编码,单个非线性声波设备可同时执行十亿次算术运算。在铌酸锂 (LN) 上占地面积为 0.03mm$^2$ 的单个器件可实现每秒 0.0144 太浮点运算 (TFLOPS),计算面积密度为 0.48 TFLOPS/mm$^2$,内核能效为 0.14 TFLOPS/瓦。作为应用,我们演示了两个 16×16 矩阵的乘法运算和 128×128 像素照片的卷积成像处理。我们的技术可以在近传感器信号处理和边缘计算领域找到多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信