Spin filtering with insulating altermagnets

Kartik Samanta, Ding-Fu Shao, Evgeny Y. Tsymbal
{"title":"Spin filtering with insulating altermagnets","authors":"Kartik Samanta, Ding-Fu Shao, Evgeny Y. Tsymbal","doi":"arxiv-2409.00195","DOIUrl":null,"url":null,"abstract":"Altermagnetic (AM) materials have recently attracted significant interest due\nto the non-relativistic momentum-dependent spin splitting of their electronic\nband structure which may be useful for antiferromagnetic (AFM) spintronics. So\nfar, however, most research studies have been focused on AM metals which can be\nutilized in spintronic devices, such as AFM tunnel junctions (AFMTJs). At the\nsame time, AM insulators have remained largely unexplored in the realm of AFM\nspintronics. Here, we propose to employ AM insulators (AMIs) as efficient\nspin-filter materials. By analyzing the complex band structure of rutile-type\naltermagnets $MF_2$ ($M$ = $Fe, Co, Ni$), we demonstrate that the evanescent\nstates in these AMIs exhibit spin- and momentum-dependent decay rates resulting\nin a substantial momentum-dependent spin polarization of the tunneling current.\nUsing a model of spin-filter tunneling across a spin-dependent potential\nbarrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions\n(SF-MTJs) that include two magnetically decoupled $MF_2$ (001) barrier layers.\nWe predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based\non AMIs $CoF_2$ and $NiF_2$ if the Fermi energy is tuned to be close to the\nvalence band maximum. Our results demonstrate that AMIs provide a viable\nalternative to conventional ferromagnetic or ferrimagnetic spin-filter\nmaterials, potentially advancing the development of next-generation AFM\nspintronic devices.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Altermagnetic (AM) materials have recently attracted significant interest due to the non-relativistic momentum-dependent spin splitting of their electronic band structure which may be useful for antiferromagnetic (AFM) spintronics. So far, however, most research studies have been focused on AM metals which can be utilized in spintronic devices, such as AFM tunnel junctions (AFMTJs). At the same time, AM insulators have remained largely unexplored in the realm of AFM spintronics. Here, we propose to employ AM insulators (AMIs) as efficient spin-filter materials. By analyzing the complex band structure of rutile-type altermagnets $MF_2$ ($M$ = $Fe, Co, Ni$), we demonstrate that the evanescent states in these AMIs exhibit spin- and momentum-dependent decay rates resulting in a substantial momentum-dependent spin polarization of the tunneling current. Using a model of spin-filter tunneling across a spin-dependent potential barrier, we estimate the TMR effect in spin-filter magnetic tunnel junctions (SF-MTJs) that include two magnetically decoupled $MF_2$ (001) barrier layers. We predict a sizable spin-filter TMR ratio of about 150-170% in SF-MTJs based on AMIs $CoF_2$ and $NiF_2$ if the Fermi energy is tuned to be close to the valence band maximum. Our results demonstrate that AMIs provide a viable alternative to conventional ferromagnetic or ferrimagnetic spin-filter materials, potentially advancing the development of next-generation AFM spintronic devices.
使用绝缘反向磁铁进行自旋过滤
近来,反铁磁(AM)材料因其电子带结构的非相对论动量依赖性自旋分裂而引起了人们的极大兴趣,这可能有助于反铁磁(AFM)自旋电子学。然而,迄今为止,大多数研究都集中在可用于自旋电子器件(如 AFM 隧道结 (AFMTJ))的 AM 金属上。与此同时,在原子力显微镜自旋电子学领域,AM 绝缘体在很大程度上仍未得到探索。在此,我们提议采用调幅绝缘体 (AMI) 作为高效引脚滤波器材料。通过分析金红石型铝磁体 $MF_2$($M$ = $Fe、Co、Ni$)的复杂带状结构,我们证明了这些 AMIs 中的蒸发态表现出与自旋和动量相关的衰减率,从而导致隧道电流出现大量与动量相关的自旋极化。我们预测,如果将费米能调整到接近价带最大值,那么在基于 AMIs $CoF_2$ 和 $NiF_2$ 的 SF-MTJs 中,自旋滤波 TMR 比率将达到 150-170% 左右。我们的研究结果表明,AMI 为传统的铁磁或铁磁自旋薄膜材料提供了一种可行的替代材料,有可能推动下一代原子力显微镜自旋电子器件的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信