Koopman analysis of combinatorial optimization problems with replica exchange Monte Carlo method

Tatsuya Naoi, Tatsuya Kishimoto, Jun Ohkubo
{"title":"Koopman analysis of combinatorial optimization problems with replica exchange Monte Carlo method","authors":"Tatsuya Naoi, Tatsuya Kishimoto, Jun Ohkubo","doi":"arxiv-2409.03154","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization problems play crucial roles in real-world\napplications, and many studies from a physics perspective have contributed to\nspecialized hardware for high-speed computation. However, some combinatorial\noptimization problems are easy to solve, and others are not. Hence, the\nqualification of the difficulty in problem-solving will be beneficial. In this\npaper, we employ the Koopman analysis for multiple time-series data from the\nreplica exchange Monte Carlo method. After proposing a quantity that aggregates\nthe information of the multiple time-series data, we performed numerical\nexperiments. The results indicate a negative correlation between the proposed\nquantity and the ability of the solution search.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combinatorial optimization problems play crucial roles in real-world applications, and many studies from a physics perspective have contributed to specialized hardware for high-speed computation. However, some combinatorial optimization problems are easy to solve, and others are not. Hence, the qualification of the difficulty in problem-solving will be beneficial. In this paper, we employ the Koopman analysis for multiple time-series data from the replica exchange Monte Carlo method. After proposing a quantity that aggregates the information of the multiple time-series data, we performed numerical experiments. The results indicate a negative correlation between the proposed quantity and the ability of the solution search.
用复制交换蒙特卡洛法对组合优化问题进行库普曼分析
组合优化问题在现实世界的应用中起着至关重要的作用,许多从物理学角度进行的研究为高速计算的专用硬件做出了贡献。然而,有些组合优化问题很容易解决,有些则不容易。因此,对问题解决的难度进行量化将大有裨益。在本文中,我们采用了库普曼分析法(Koopman analysis)来处理多时间序列数据。在提出了一个汇总多个时间序列数据信息的量之后,我们进行了数值实验。结果表明,提出的量与求解搜索能力之间存在负相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信