A geometric condition for robot-swarm cohesion and cluster-flock transition

Mathias Casiulis, Eden Arbel, Yoav Lahini, Stefano Martiniani, Naomi Oppenheimer, Matan Yah Ben Zion
{"title":"A geometric condition for robot-swarm cohesion and cluster-flock transition","authors":"Mathias Casiulis, Eden Arbel, Yoav Lahini, Stefano Martiniani, Naomi Oppenheimer, Matan Yah Ben Zion","doi":"arxiv-2409.04618","DOIUrl":null,"url":null,"abstract":"We present a geometric design rule for size-controlled clustering of\nself-propelled particles. Active particles that tend to rotate under an\nexternal force have an intrinsic signed-parameter with units of curvature,\nwhich we term curvity, derivable from first principles. Robot experiments and\nnumerical simulations show that the properties of the individual robot alone --\nradius and curvity -- control pair-cohesion in a binary system as well as the\nstability of flocking and clustering in a swarm. Our results have applications\nin meta-materials and embodied decentralized control.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a geometric design rule for size-controlled clustering of self-propelled particles. Active particles that tend to rotate under an external force have an intrinsic signed-parameter with units of curvature, which we term curvity, derivable from first principles. Robot experiments and numerical simulations show that the properties of the individual robot alone -- radius and curvity -- control pair-cohesion in a binary system as well as the stability of flocking and clustering in a swarm. Our results have applications in meta-materials and embodied decentralized control.
机器人群凝聚力和群锁过渡的几何条件
我们提出了一种尺寸可控的自推进粒子聚类几何设计规则。在外力作用下趋于旋转的有源粒子有一个以曲率为单位的固有符号参数,我们称之为曲率,它可以从第一原理推导出来。机器人实验和数值模拟表明,单个机器人的属性--半径和曲率--控制着二元系统中的成对粘合力,以及蜂群中成群和聚群的稳定性。我们的研究成果可应用于元材料和嵌入式分散控制领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信