Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion

Alberto Comoretto, Harmannus A. H. Schomaker, Johannes T. B. Overvelde
{"title":"Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion","authors":"Alberto Comoretto, Harmannus A. H. Schomaker, Johannes T. B. Overvelde","doi":"arxiv-2409.07011","DOIUrl":null,"url":null,"abstract":"Animals achieve robust locomotion by offloading regulation from the brain to\nphysical couplings within the body. Contrarily, locomotion in artificial\nsystems often depends on centralized processors. Here, we introduce a rapid and\nautonomous locomotion strategy with synchronized gaits emerging through\nphysical interactions between self-oscillating limbs and the environment,\nwithout control signals. Each limb is a single soft tube that only requires\nconstant flow of air to perform cyclic stepping motions at frequencies reaching\n300 hertz. By combining several of these self-oscillating limbs, their physical\nsynchronization enables tethered and untethered locomotion speeds that are\norders of magnitude faster than comparable state-of-the-art. We demonstrate\nthat these seemingly simple devices exhibit autonomy, including obstacle\navoidance and phototaxis, opening up avenues for robust and functional robots\nat all scales.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Animals achieve robust locomotion by offloading regulation from the brain to physical couplings within the body. Contrarily, locomotion in artificial systems often depends on centralized processors. Here, we introduce a rapid and autonomous locomotion strategy with synchronized gaits emerging through physical interactions between self-oscillating limbs and the environment, without control signals. Each limb is a single soft tube that only requires constant flow of air to perform cyclic stepping motions at frequencies reaching 300 hertz. By combining several of these self-oscillating limbs, their physical synchronization enables tethered and untethered locomotion speeds that are orders of magnitude faster than comparable state-of-the-art. We demonstrate that these seemingly simple devices exhibit autonomy, including obstacle avoidance and phototaxis, opening up avenues for robust and functional robots at all scales.
软性自振荡肢体的物理同步,实现快速自主运动
动物通过将调节从大脑转移到身体内部的物理耦合来实现稳健的运动。相反,人工系统中的运动通常依赖于集中式处理器。在这里,我们介绍了一种快速自主的运动策略,通过自振荡肢体与环境之间的物理交互作用产生同步步态,无需控制信号。每个肢体都是一根软管,只需要恒定的气流,就能以高达 300 赫兹的频率完成循环步态运动。通过将多个自振荡肢体组合在一起,它们之间的物理同步实现了系留和非系留运动速度,其速度比同类最先进产品快了数个数量级。我们展示了这些看似简单的装置所表现出的自主性,包括障碍物规避和光向导,为在所有尺度上制造坚固耐用的功能性机器人开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信