{"title":"Machine-learning approach for operating electron beam at KEK electron/positron injector linac","authors":"Gaku Mitsuka, Shinnosuke Kato, Naoko Iida, Takuya Natsui, Masanori Satoh","doi":"10.1103/physrevaccelbeams.27.084601","DOIUrl":null,"url":null,"abstract":"In current accelerators, numerous parameters and monitored values are to be adjusted and evaluated, respectively. In addition, fine adjustments are required to achieve the target performance. Therefore, the conventional accelerator-operation method, in which experts manually adjust the parameters, is reaching its limits. We are currently investigating the use of machine learning for accelerator tuning as an alternative to expert-based tuning. In recent years, machine-learning algorithms have progressed significantly in terms of speed, sensitivity, and application range. In addition, various libraries are available from different vendors and are relatively easy to use. Herein, we report the results of electron-beam tuning experiments using Bayesian optimization, a tree-structured Parzen estimator, and a covariance matrix-adaptation evolution strategy. Beam-tuning experiments are performed at the KEK <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi>e</mi><mo>−</mo></msup><mo>/</mo><msup><mi>e</mi><mo>+</mo></msup></math> injector Linac to maximize the electron-beam charge and reduce the energy-dispersion function. In each case, the performance achieved is comparable to that of a skilled expert.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.084601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In current accelerators, numerous parameters and monitored values are to be adjusted and evaluated, respectively. In addition, fine adjustments are required to achieve the target performance. Therefore, the conventional accelerator-operation method, in which experts manually adjust the parameters, is reaching its limits. We are currently investigating the use of machine learning for accelerator tuning as an alternative to expert-based tuning. In recent years, machine-learning algorithms have progressed significantly in terms of speed, sensitivity, and application range. In addition, various libraries are available from different vendors and are relatively easy to use. Herein, we report the results of electron-beam tuning experiments using Bayesian optimization, a tree-structured Parzen estimator, and a covariance matrix-adaptation evolution strategy. Beam-tuning experiments are performed at the KEK injector Linac to maximize the electron-beam charge and reduce the energy-dispersion function. In each case, the performance achieved is comparable to that of a skilled expert.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.