On Fourier coefficients associated to automorphic L-functions over a binary quadratic form and its applications

Guodong Hua
{"title":"On Fourier coefficients associated to automorphic L-functions over a binary quadratic form and its applications","authors":"Guodong Hua","doi":"10.1007/s11139-024-00916-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>f</i> and <i>g</i> be two distinct normalized primitive Hecke cusp forms of even integral weights <span>\\(k_{1}\\)</span> and <span>\\(k_{2}\\)</span> for the full modular group <span>\\(\\Gamma =SL(2,{\\mathbb {Z}})\\)</span>, respectively. Denote by <span>\\(\\lambda _{f\\otimes f\\otimes f\\otimes g}(n)\\)</span> and <span>\\(\\lambda _{\\text {sym}^{2}f\\otimes f\\otimes g}(n)\\)</span> the <i>n</i>th normalized coefficients of the automorphic <i>L</i>-functions <span>\\(L(f\\otimes f\\otimes f\\otimes g,s)\\)</span> and <span>\\(L(\\text {sym}^{2}f\\otimes f\\otimes g,s)\\)</span>, respectively. In this paper, we are interested in the average behavior of the coefficients <span>\\(\\lambda _{f\\otimes f\\otimes f\\otimes g}(n)\\)</span> and <span>\\(\\lambda _{\\text {sym}^{2}f\\otimes f\\otimes g}(n)\\)</span> on a primitive integral binary quadratic form with negative discriminant whose class number is 1, and we also provide the asymptotic formulae of these summatory functions. As an application, we also consider the number of sign changes of the sequences <span>\\(\\{\\lambda _{f\\otimes f\\otimes f\\otimes g}(n)\\}_{n\\geqslant 1}\\)</span> and <span>\\(\\{\\lambda _{\\text {sym}^{2}f\\otimes f\\otimes g}(n)\\}_{n\\geqslant 1}\\)</span> on the same binary quadratic form in short intervals.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00916-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let f and g be two distinct normalized primitive Hecke cusp forms of even integral weights \(k_{1}\) and \(k_{2}\) for the full modular group \(\Gamma =SL(2,{\mathbb {Z}})\), respectively. Denote by \(\lambda _{f\otimes f\otimes f\otimes g}(n)\) and \(\lambda _{\text {sym}^{2}f\otimes f\otimes g}(n)\) the nth normalized coefficients of the automorphic L-functions \(L(f\otimes f\otimes f\otimes g,s)\) and \(L(\text {sym}^{2}f\otimes f\otimes g,s)\), respectively. In this paper, we are interested in the average behavior of the coefficients \(\lambda _{f\otimes f\otimes f\otimes g}(n)\) and \(\lambda _{\text {sym}^{2}f\otimes f\otimes g}(n)\) on a primitive integral binary quadratic form with negative discriminant whose class number is 1, and we also provide the asymptotic formulae of these summatory functions. As an application, we also consider the number of sign changes of the sequences \(\{\lambda _{f\otimes f\otimes f\otimes g}(n)\}_{n\geqslant 1}\) and \(\{\lambda _{\text {sym}^{2}f\otimes f\otimes g}(n)\}_{n\geqslant 1}\) on the same binary quadratic form in short intervals.

关于与二元二次型上的自定 L 函数相关的傅里叶系数及其应用
让 f 和 g 分别是全模态群 \(\Gamma =SL(2,{\mathbb {Z}})\) 的两个不同的归一化原始 Hecke Cusp 形式的偶积分权重 \(k_{1}\) 和 \(k_{2}\) 。用\(\lambda _{f\otimes f\otimes g}(n)\)和\(\lambda _{text {sym}^{2}f\otimes f\otimes g}(n)\)表示自动L函数\(L(f\otimes f\otimes g. s))和\(\lambda _{text {sym}^{2}f\otimes f\otimes g}(n)\)的第n个归一化系数、s)\) 和 L(\text {sym}^{2}f\otimes f\otimes g,s)\)。在本文中,我们对类数为 1 的负判别式的初等积分二元二次函数上的系数 \(\lambda _{f\otimes f\otimes g}(n)\) 和 \(\lambda _{text {sym}^{2}f\otimes f\otimes g}(n)\) 的平均行为感兴趣,我们还提供了这些求和函数的渐近公式。作为应用,我们还考虑了同一二元二次型上的 \(\{\lambda _{f\otimes f\otimes g}(n)\}_{n\geqslant 1}\) 和 \(\{\lambda _{text {sym}^{2}f\otimes f\otimes g}(n)\}_{n\geqslant 1}\) 序列在短间隔内的符号变化次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信