Modular forms with non-vanishing central values and linear independence of Fourier coefficients

Debargha Banerjee, Priyanka Majumder
{"title":"Modular forms with non-vanishing central values and linear independence of Fourier coefficients","authors":"Debargha Banerjee, Priyanka Majumder","doi":"10.1007/s11139-024-00931-5","DOIUrl":null,"url":null,"abstract":"<p>In this article, we are interested in modular forms with non-vanishing central critical values and linear independence of Fourier coefficients of modular forms. The main ingredient is a generalization of a theorem due to VanderKam to modular symbols of higher weights. We prove that for sufficiently large primes <i>p</i>, Hecke operators <span>\\(T_1, T_2, \\ldots , T_D\\)</span> act linearly independently on the winding elements inside the space of weight 2<i>k</i> cuspidal modular symbol <span>\\(\\mathbb {S}_{2k}(\\Gamma _0(p))\\)</span> with <span>\\(k\\ge 1\\)</span> for <span>\\(D^2\\ll p\\)</span>. This gives a bound on the number of newforms with non-vanishing arithmetic <i>L</i>-functions at their central critical points and linear independence on the reductions of these modular forms for prime modulo <span>\\(l\\not =p\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00931-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we are interested in modular forms with non-vanishing central critical values and linear independence of Fourier coefficients of modular forms. The main ingredient is a generalization of a theorem due to VanderKam to modular symbols of higher weights. We prove that for sufficiently large primes p, Hecke operators \(T_1, T_2, \ldots , T_D\) act linearly independently on the winding elements inside the space of weight 2k cuspidal modular symbol \(\mathbb {S}_{2k}(\Gamma _0(p))\) with \(k\ge 1\) for \(D^2\ll p\). This gives a bound on the number of newforms with non-vanishing arithmetic L-functions at their central critical points and linear independence on the reductions of these modular forms for prime modulo \(l\not =p\).

中心值不求和傅立叶系数线性独立的模块形式
在这篇文章中,我们对中心临界值不相等的模形式以及模形式傅里叶系数的线性独立性感兴趣。其主要内容是将 VanderKam 的定理推广到更高权重的模态符号。我们证明,对于足够大的素数 p,赫克算子 \(T_1, T_2, \ldots , T_D\) 线性地独立作用于权重 2k cuspidal 模块符号空间内部的绕组元素 \(\mathbb {S}_{2k}(\Gamma _0(p))\) with \(k\ge 1\) for \(D^2\ll p\).这就给出了在其中心临界点上具有非求值算术 L 函数的新形式的数量约束,以及这些模形式的还原对于素数 modulo (l\not =p\)的线性独立性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信