Diophantine approximation with prime denominator in quadratic number fields under GRH

Stephan Baier, Sourav Das, Esrafil Ali Molla
{"title":"Diophantine approximation with prime denominator in quadratic number fields under GRH","authors":"Stephan Baier, Sourav Das, Esrafil Ali Molla","doi":"10.1007/s11139-024-00942-2","DOIUrl":null,"url":null,"abstract":"<p>Matomäki proved that if <span>\\(\\alpha \\in {\\mathbb {R}}\\)</span> is irrational, then there are infinitely many primes <i>p</i> such that <span>\\(|\\alpha -a/p|\\le p^{-4/3+\\varepsilon }\\)</span> for a suitable integer <i>a</i>. In this paper, we extend this result to all quadratic number fields under the condition that the Grand Riemann Hypothesis holds for their Hecke <i>L</i>-functions.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00942-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Matomäki proved that if \(\alpha \in {\mathbb {R}}\) is irrational, then there are infinitely many primes p such that \(|\alpha -a/p|\le p^{-4/3+\varepsilon }\) for a suitable integer a. In this paper, we extend this result to all quadratic number fields under the condition that the Grand Riemann Hypothesis holds for their Hecke L-functions.

GRH 条件下二次数域质分母的 Diophantine 近似算法
Matomäki 证明了如果 \(\alpha \in {\mathbb {R}}\) 是无理数,那么对于一个合适的整数 a,有无限多的素数 p 使得 \(|\alpha -a/p|\le p^{-4/3+\varepsilon }\) 存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信