A q-analog of the Stirling–Eulerian Polynomials

Yao Dong, Zhicong Lin, Qiongqiong Pan
{"title":"A q-analog of the Stirling–Eulerian Polynomials","authors":"Yao Dong, Zhicong Lin, Qiongqiong Pan","doi":"10.1007/s11139-024-00939-x","DOIUrl":null,"url":null,"abstract":"<p>In 1974, Carlitz and Scoville introduced the Stirling–Eulerian polynomial <span>\\(A_n(x,y|\\alpha ,\\beta )\\)</span> as the enumerator of permutations by descents, ascents, left-to-right maxima and right-to-left maxima. Recently, Ji considered a refinement of <span>\\(A_n(x,y|\\alpha ,\\beta )\\)</span>, denoted <span>\\(P_n(u_1,u_2,u_3,u_4|\\alpha ,\\beta )\\)</span>, which is the enumerator of permutations by valleys, peaks, double ascents, double descents, left-to-right maxima and right-to-left maxima. Using Chen’s context-free grammar calculus, Ji proved a formula for the generating function of <span>\\(P_n(u_1,u_2,u_3,u_4|\\alpha ,\\beta )\\)</span>, generalizing the work of Carlitz and Scoville. Ji’s formula has many nice consequences, one of which is an intriguing <span>\\(\\gamma \\)</span>-positivity expansion for <span>\\(A_n(x,y|\\alpha ,\\beta )\\)</span>. In this paper, we prove a <i>q</i>-analog of Ji’s formula by using Gessel’s <i>q</i>-compositional formula and provide a combinatorial approach to her <span>\\(\\gamma \\)</span>-positivity expansion of <span>\\(A_n(x,y|\\alpha ,\\beta )\\)</span>.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00939-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1974, Carlitz and Scoville introduced the Stirling–Eulerian polynomial \(A_n(x,y|\alpha ,\beta )\) as the enumerator of permutations by descents, ascents, left-to-right maxima and right-to-left maxima. Recently, Ji considered a refinement of \(A_n(x,y|\alpha ,\beta )\), denoted \(P_n(u_1,u_2,u_3,u_4|\alpha ,\beta )\), which is the enumerator of permutations by valleys, peaks, double ascents, double descents, left-to-right maxima and right-to-left maxima. Using Chen’s context-free grammar calculus, Ji proved a formula for the generating function of \(P_n(u_1,u_2,u_3,u_4|\alpha ,\beta )\), generalizing the work of Carlitz and Scoville. Ji’s formula has many nice consequences, one of which is an intriguing \(\gamma \)-positivity expansion for \(A_n(x,y|\alpha ,\beta )\). In this paper, we prove a q-analog of Ji’s formula by using Gessel’s q-compositional formula and provide a combinatorial approach to her \(\gamma \)-positivity expansion of \(A_n(x,y|\alpha ,\beta )\).

斯特林-欧拉多项式的 q-analog
1974 年,Carlitz 和 Scoville 引入了 Stirling-Eulerian 多项式 \(A_n(x,y|alpha ,\beta )\) 作为由下降、上升、从左到右最大值和从右到左最大值排列的枚举器。最近,Ji 考虑了 \(A_n(x,y\alpha ,\beta )\) 的细化,表示为 \(P_n(u_1,u_2,u_3,u_4|\alpha ,\beta )\) ,它是按山谷、山峰、双升、双降、从左至右最大值和从右至左最大值排列的枚举器。利用陈的无上下文语法微积分,季羡林证明了 \(P_n(u_1,u_2,u_3,u_4|\alpha ,\beta )\) 的生成函数公式,推广了卡利茨和斯科维尔的工作。Ji 公式有许多很好的结果,其中之一就是 \(A_n(x,y|alpha ,\beta )\) 的一个有趣的 \(\gamma \)-正扩展。在本文中,我们通过使用 Gessel 的 q 组合公式证明了 Ji 公式的 q-analog 并提供了一种组合方法来实现她的\(A_n(x,y|\alpha ,\beta)\的 \(\gamma\)-正扩展。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信