Mohammad Hajiabadi, Shahram Khazaei, Behzad Vahdani
{"title":"Randomness Recoverable Secret Sharing Schemes","authors":"Mohammad Hajiabadi, Shahram Khazaei, Behzad Vahdani","doi":"10.1007/s00145-024-09515-4","DOIUrl":null,"url":null,"abstract":"<p>It is well-known that randomness is essential for secure cryptography. The randomness used in cryptographic primitives is not necessarily recoverable even by the party who can, e.g., decrypt or recover the underlying secret/message. Several cryptographic primitives that support randomness recovery have turned out useful in various applications. In this paper, we study <i>randomness recoverable secret sharing schemes</i> (RR-SSS), in both information-theoretic and computational settings and provide two results. First, we show that while every access structure admits a perfect RR-SSS, there are very simple access structures (e.g., in monotone <span>\\(\\textsf{AC}^0\\)</span>) that do not admit efficient perfect (or even statistical) RR-SSS. Second, we show that the existence of efficient computational RR-SSS for certain access structures in monotone <span>\\(\\textsf{AC}^0\\)</span> implies the existence of one-way functions. This stands in sharp contrast to (non-RR) SSS schemes for which no such results are known. RR-SSS plays a key role in making advanced attributed-based encryption schemes randomness recoverable, which in turn have applications in the context of designated-verifier non-interactive zero knowledge.</p>","PeriodicalId":54849,"journal":{"name":"Journal of Cryptology","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cryptology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00145-024-09515-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that randomness is essential for secure cryptography. The randomness used in cryptographic primitives is not necessarily recoverable even by the party who can, e.g., decrypt or recover the underlying secret/message. Several cryptographic primitives that support randomness recovery have turned out useful in various applications. In this paper, we study randomness recoverable secret sharing schemes (RR-SSS), in both information-theoretic and computational settings and provide two results. First, we show that while every access structure admits a perfect RR-SSS, there are very simple access structures (e.g., in monotone \(\textsf{AC}^0\)) that do not admit efficient perfect (or even statistical) RR-SSS. Second, we show that the existence of efficient computational RR-SSS for certain access structures in monotone \(\textsf{AC}^0\) implies the existence of one-way functions. This stands in sharp contrast to (non-RR) SSS schemes for which no such results are known. RR-SSS plays a key role in making advanced attributed-based encryption schemes randomness recoverable, which in turn have applications in the context of designated-verifier non-interactive zero knowledge.
期刊介绍:
The Journal of Cryptology is a forum for original results in all areas of modern information security. Both cryptography and cryptanalysis are covered, including information theoretic and complexity theoretic perspectives as well as implementation, application, and standards issues. Coverage includes such topics as public key and conventional algorithms and their implementations, cryptanalytic attacks, pseudo-random sequences, computational number theory, cryptographic protocols, untraceability, privacy, authentication, key management and quantum cryptography. In addition to full-length technical, survey, and historical articles, the journal publishes short notes.