The origin of the Hα line profiles in simulated disc galaxies

IF 4.7 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Timmy Ejdetjärn, Oscar Agertz, Göran Östlin, Martin P Rey, Florent Renaud
{"title":"The origin of the Hα line profiles in simulated disc galaxies","authors":"Timmy Ejdetjärn, Oscar Agertz, Göran Östlin, Martin P Rey, Florent Renaud","doi":"10.1093/mnras/stae2099","DOIUrl":null,"url":null,"abstract":"Observations of ionised Hα gas in high-redshift disc galaxies have ubiquitously found significant line broadening, σHα ∼ 10 − 100 km s−1. To understand whether this broadening reflects gas turbulence within the interstellar medium (ISM) of galactic discs, or arises from out-of-plane emission in mass-loaded outflows, we perform radiation hydrodynamic (RHD) simulations of isolated Milky Way-mass disc galaxies in a gas-poor (low-redshift) and gas rich (high-redshift) condition and create mock Hα emission line profiles. We find that the majority of the total (integrated) Hα emission is confined within the ISM, with extraplanar gas contributing $\\sim 45~{{\\%}}$ of the extended profile wings (vz ≥ 200${\\, \\rm {km\\, s^{-1}} }$) in the gas-rich galaxy. This substantiates using the Hα emission line as a tracer of mid-plane disc dynamics. We investigate the relative contribution of diffuse and dense Hα emitting gas, corresponding to diffuse ionised gas (DIG; ρ ≲ 0.1 cm−3, T ∼ 8 000 K) and HII regions (ρ ≳ 10 cm−3, T ∼ 10 000 K), respectively, and find that DIG contributes $f_{\\rm DIG}\\lesssim 10~{{\\%}}$ of the total LHα. However, the DIG can reach upwards of σHα ∼ 60 − 80 km s−1 while the HII regions are much less turbulent σHα ∼ 10 − 40 km s−1. This implies that the σHα observed using the full Hα emission line is dependent on the relative Hα contribution from DIG/HII regions and a larger fDIG would shift σHα to higher values. Finally, we show that σHα evolves, in both the DIG and HII regions, with the galaxy gas fraction. Our high-redshift equivalent galaxy is roughly twice as turbulent, except for in the DIG which has a more shallow evolution.","PeriodicalId":18930,"journal":{"name":"Monthly Notices of the Royal Astronomical Society","volume":"4 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/mnras/stae2099","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Observations of ionised Hα gas in high-redshift disc galaxies have ubiquitously found significant line broadening, σHα ∼ 10 − 100 km s−1. To understand whether this broadening reflects gas turbulence within the interstellar medium (ISM) of galactic discs, or arises from out-of-plane emission in mass-loaded outflows, we perform radiation hydrodynamic (RHD) simulations of isolated Milky Way-mass disc galaxies in a gas-poor (low-redshift) and gas rich (high-redshift) condition and create mock Hα emission line profiles. We find that the majority of the total (integrated) Hα emission is confined within the ISM, with extraplanar gas contributing $\sim 45~{{\%}}$ of the extended profile wings (vz ≥ 200${\, \rm {km\, s^{-1}} }$) in the gas-rich galaxy. This substantiates using the Hα emission line as a tracer of mid-plane disc dynamics. We investigate the relative contribution of diffuse and dense Hα emitting gas, corresponding to diffuse ionised gas (DIG; ρ ≲ 0.1 cm−3, T ∼ 8 000 K) and HII regions (ρ ≳ 10 cm−3, T ∼ 10 000 K), respectively, and find that DIG contributes $f_{\rm DIG}\lesssim 10~{{\%}}$ of the total LHα. However, the DIG can reach upwards of σHα ∼ 60 − 80 km s−1 while the HII regions are much less turbulent σHα ∼ 10 − 40 km s−1. This implies that the σHα observed using the full Hα emission line is dependent on the relative Hα contribution from DIG/HII regions and a larger fDIG would shift σHα to higher values. Finally, we show that σHα evolves, in both the DIG and HII regions, with the galaxy gas fraction. Our high-redshift equivalent galaxy is roughly twice as turbulent, except for in the DIG which has a more shallow evolution.
模拟圆盘星系中 Hα 线剖面的起源
对高红移圆盘星系中电离Hα气体的观测普遍发现了明显的线增宽现象,σHα ∼ 10 - 100 km s-1。为了了解这种增宽是反映了星系盘星际介质(ISM)中的气体湍流,还是来自质量负载外流的面外发射,我们对气体贫乏(低红移)和气体富集(高红移)条件下的孤立银河质量盘星系进行了辐射流体力学(RHD)模拟,并创建了模拟Hα发射线剖面。我们发现,总(综合)Hα发射的绝大部分都被限制在ISM内部,而在富含气体的星系中,平面外的气体占了延伸剖面翼(vz ≥ 200${, \rm {km\, s^{-1}} }$)的45~{{\{%}}$。这证实了把Hα发射线作为中平面圆盘动力学的示踪线是正确的。我们研究了弥散和致密Hα发射气体的相对贡献,它们分别对应于弥散电离气体(DIG;ρ ≲ 0.1 cm-3, T ∼ 8 000 K)和HII区(ρ ≳ 10 cm-3, T ∼ 10 000 K),发现DIG贡献了LHα总量的$f_{\rm DIG}\lesssim 10~{{/\%}}$。然而,DIG的湍流可以高达σHα ∼ 60 - 80 km s-1,而HII区域的湍流则小得多σHα ∼ 10 - 40 km s-1。这意味着利用完整的 Hα 发射线观测到的σHα 取决于来自 DIG/HII 区域的相对 Hα 贡献,而更大的 fDIG 会使σHα 变为更高的值。最后,我们表明,在DIG和HII区域,σHα都会随着星系气体组分的变化而变化。我们的高红移等效星系的湍流程度大约是它的两倍,只有DIG区的湍流演化较浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
37.50%
发文量
3198
审稿时长
3 months
期刊介绍: Monthly Notices of the Royal Astronomical Society is one of the world''s leading primary research journals in astronomy and astrophysics, as well as one of the longest established. It publishes the results of original research in positional and dynamical astronomy, astrophysics, radio astronomy, cosmology, space research and the design of astronomical instruments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信