{"title":"The Continuous Electron Beam Accelerator Facility at 12 GeV","authors":"P. A. Adderleyet al.","doi":"10.1103/physrevaccelbeams.27.084802","DOIUrl":null,"url":null,"abstract":"This review paper describes the energy-upgraded Continuous Electron Beam Accelerator Facility (CEBAF) accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing 88 superconducting cavities that have operated cw at an average accelerating gradient of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>20</mn><mtext> </mtext><mtext> </mtext><mi>MV</mi><mo>/</mo><mi mathvariant=\"normal\">m</mi></mrow></math>. After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgraded CEBAF accelerator system in detail with particular attention paid to the new beam acceleration systems. In addition to doubling the acceleration in each linac, the upgrade included improving the beam recirculation magnets, adding more helium cooling capacity to allow the newly installed modules to run cold, adding a new experimental hall, and improving numerous other accelerator components. We review several of the techniques deployed to operate and analyze the accelerator performance and document system operating experience and performance. In the final portion of the document, we present much of the current planning regarding projects to improve accelerator performance and enhance operating margins, and our plans for ensuring CEBAF operates reliably into the future. For the benefit of potential users of CEBAF, the performance and quality measures for the beam delivered to each of the experimental halls are summarized in the Appendix.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.084802","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This review paper describes the energy-upgraded Continuous Electron Beam Accelerator Facility (CEBAF) accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing 88 superconducting cavities that have operated cw at an average accelerating gradient of . After reviewing the attributes and performance of the previous 6 GeV CEBAF accelerator, we discuss the upgraded CEBAF accelerator system in detail with particular attention paid to the new beam acceleration systems. In addition to doubling the acceleration in each linac, the upgrade included improving the beam recirculation magnets, adding more helium cooling capacity to allow the newly installed modules to run cold, adding a new experimental hall, and improving numerous other accelerator components. We review several of the techniques deployed to operate and analyze the accelerator performance and document system operating experience and performance. In the final portion of the document, we present much of the current planning regarding projects to improve accelerator performance and enhance operating margins, and our plans for ensuring CEBAF operates reliably into the future. For the benefit of potential users of CEBAF, the performance and quality measures for the beam delivered to each of the experimental halls are summarized in the Appendix.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.