C. U. Om Kumar, Suguna Marappan, Bhavadharini Murugeshan, P. Mercy Rajaselvi Beaulah
{"title":"Intrusion Detection for Blockchain-Based Internet of Things Using Gaussian Mixture–Fully Convolutional Variational Autoencoder Model","authors":"C. U. Om Kumar, Suguna Marappan, Bhavadharini Murugeshan, P. Mercy Rajaselvi Beaulah","doi":"10.1002/nem.2295","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Internet of Things (IoT) is an evolving paradigm that has dramatically transformed the traditional style of living into a smart lifestyle. IoT devices have recently attained great attention due to their wide range of applications in various sectors, such as healthcare, smart home devices, smart industries, smart cities, and so forth. However, security is still a challenging issue in the IoT environment. Because of the disparate nature of IoT devices, it is hard to detect the different kinds of attacks available in IoT. Various existing works aim to provide a reliable intrusion detection system (IDS) technique. But they failed to work because of several security issues. Thus, the proposed study presents a blockchain-based deep learning model for IDS. Initially, the input data are preprocessed using min-max normalization, converting the raw input data into improved quality. In order to detect the presented attacks in the provided dataset, the proposed work introduced Gaussian mixture–fully convolutional variational autoencoder (GM-FCVAE) model. The implementation is performed in Python, and the performance of the proposed GM-FCVAE model is analyzed by evaluating several metrics. The proposed GM-FCVAE model is tested on three datasets and attained superior accuracy of 99.18%, 98.81%, and 98.4% with UNSW-NB15, CICIDS 2019, and N_BaIoT datasets, respectively. The comparison reveals that the proposed GM-FCVAE model obtained higher results than the other deep learning techniques. The outperformance shows the efficacy of the proposed study in identifying security attacks.</p>\n </div>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2295","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) is an evolving paradigm that has dramatically transformed the traditional style of living into a smart lifestyle. IoT devices have recently attained great attention due to their wide range of applications in various sectors, such as healthcare, smart home devices, smart industries, smart cities, and so forth. However, security is still a challenging issue in the IoT environment. Because of the disparate nature of IoT devices, it is hard to detect the different kinds of attacks available in IoT. Various existing works aim to provide a reliable intrusion detection system (IDS) technique. But they failed to work because of several security issues. Thus, the proposed study presents a blockchain-based deep learning model for IDS. Initially, the input data are preprocessed using min-max normalization, converting the raw input data into improved quality. In order to detect the presented attacks in the provided dataset, the proposed work introduced Gaussian mixture–fully convolutional variational autoencoder (GM-FCVAE) model. The implementation is performed in Python, and the performance of the proposed GM-FCVAE model is analyzed by evaluating several metrics. The proposed GM-FCVAE model is tested on three datasets and attained superior accuracy of 99.18%, 98.81%, and 98.4% with UNSW-NB15, CICIDS 2019, and N_BaIoT datasets, respectively. The comparison reveals that the proposed GM-FCVAE model obtained higher results than the other deep learning techniques. The outperformance shows the efficacy of the proposed study in identifying security attacks.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.