Ming Li;Zhaoli Yang;Tao Wang;Yushu Zhang;Wenying Wen
{"title":"Dual Protection for Image Privacy and Copyright via Traceable Adversarial Examples","authors":"Ming Li;Zhaoli Yang;Tao Wang;Yushu Zhang;Wenying Wen","doi":"10.1109/TCSVT.2024.3448351","DOIUrl":null,"url":null,"abstract":"In recent years, the uploading of massive personal images has increased the security risks, mainly including privacy breaches and copyright infringement. Adversarial examples provide a novel solution for protecting image privacy, as they can evade the detection by deep neural network (DNN)-based recognizers. However, the perturbations in the adversarial examples typically meaningless and therefore cannot be extracted as traceable information to support copyright protection. In this paper, we designed a dual protection scheme for image privacy and copyright via traceable adversarial examples. Specifically, a traceable adversarial model is proposed, which can be used to embed the invisible copyright information into images for copyright protection while fooling DNN-based recognizers for privacy protection. Inspired by the training method of generative adversarial networks (GANs), a new dynamic adversarial training strategy is designed, which allows our model for achieving stable multi-objective learning. Experimental results show that our scheme is exceptionally robust in the face of a variety of noise conditions and image processing methods, while exhibiting good model migration and defense robustness.","PeriodicalId":13082,"journal":{"name":"IEEE Transactions on Circuits and Systems for Video Technology","volume":"34 12","pages":"13401-13412"},"PeriodicalIF":8.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems for Video Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10644094/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the uploading of massive personal images has increased the security risks, mainly including privacy breaches and copyright infringement. Adversarial examples provide a novel solution for protecting image privacy, as they can evade the detection by deep neural network (DNN)-based recognizers. However, the perturbations in the adversarial examples typically meaningless and therefore cannot be extracted as traceable information to support copyright protection. In this paper, we designed a dual protection scheme for image privacy and copyright via traceable adversarial examples. Specifically, a traceable adversarial model is proposed, which can be used to embed the invisible copyright information into images for copyright protection while fooling DNN-based recognizers for privacy protection. Inspired by the training method of generative adversarial networks (GANs), a new dynamic adversarial training strategy is designed, which allows our model for achieving stable multi-objective learning. Experimental results show that our scheme is exceptionally robust in the face of a variety of noise conditions and image processing methods, while exhibiting good model migration and defense robustness.
期刊介绍:
The IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) is dedicated to covering all aspects of video technologies from a circuits and systems perspective. We encourage submissions of general, theoretical, and application-oriented papers related to image and video acquisition, representation, presentation, and display. Additionally, we welcome contributions in areas such as processing, filtering, and transforms; analysis and synthesis; learning and understanding; compression, transmission, communication, and networking; as well as storage, retrieval, indexing, and search. Furthermore, papers focusing on hardware and software design and implementation are highly valued. Join us in advancing the field of video technology through innovative research and insights.