Asymptotics of solutions of the Cauchy problem for a singularly perturbed operator differential transport equation

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. V. Nesterov
{"title":"Asymptotics of solutions of the Cauchy problem for a singularly perturbed operator differential transport equation","authors":"A. V. Nesterov","doi":"10.1134/S0040577924080075","DOIUrl":null,"url":null,"abstract":"<p> We consider singularly perturbed operator differential transport equations of a special form in the case where the transport operator acts on space–time variables; a linear operator acting on an additional variable describes the interaction that “scrambles” the solution with respect to that variable. We construct a formal asymptotic expansion of the solution of the Cauchy problem for a singularly perturbed operator differential transport equation with small nonlinearity and weak diffusion in the case of several spatial variables. Under some conditions assumed for these problems, the leading term of the asymptotics is described by a quasilinear parabolic equation. The remainder term is estimated with respect to the residual under certain conditions. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924080075","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider singularly perturbed operator differential transport equations of a special form in the case where the transport operator acts on space–time variables; a linear operator acting on an additional variable describes the interaction that “scrambles” the solution with respect to that variable. We construct a formal asymptotic expansion of the solution of the Cauchy problem for a singularly perturbed operator differential transport equation with small nonlinearity and weak diffusion in the case of several spatial variables. Under some conditions assumed for these problems, the leading term of the asymptotics is described by a quasilinear parabolic equation. The remainder term is estimated with respect to the residual under certain conditions.

奇异扰动算子微分传输方程的考奇问题解的渐近性
摘要 我们考虑了一种特殊形式的奇异扰动算子微分传输方程,即传输算子作用于时空变量;作用于附加变量的线性算子描述了 "扰乱 "该变量解的相互作用。我们为具有小非线性和弱扩散性的奇异扰动算子微分传输方程的考奇问题的解构建了一个形式上的渐近展开。在这些问题的某些假定条件下,渐近线的前项由准线性抛物方程描述。在某些条件下,余项是根据残差估算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信