{"title":"Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation","authors":"V. V. Alekseev, M. M. Preobrazhenskaia","doi":"10.1134/S0040577924080014","DOIUrl":null,"url":null,"abstract":"<p> The relaxation self-oscillations of the Mackey–Glass equation are studied under the assumption that the exponent in the nonlinearity denominator is a large parameter. We consider the case where the limit relay equation, which arises as the large parameter tends to infinity, has a periodic solution with the smallest number of breaking points on the period. In this case, we prove the existence of a periodic solution of the Mackey–Glass equation that is asymptotically close to the periodic solution of the limit equation. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924080014","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The relaxation self-oscillations of the Mackey–Glass equation are studied under the assumption that the exponent in the nonlinearity denominator is a large parameter. We consider the case where the limit relay equation, which arises as the large parameter tends to infinity, has a periodic solution with the smallest number of breaking points on the period. In this case, we prove the existence of a periodic solution of the Mackey–Glass equation that is asymptotically close to the periodic solution of the limit equation.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.