An Outlier Detection Approach to Recognize the Sources of a Process Failure within a Multivariate Poisson Process

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chia-Ding Hou, Rung-Hung Su
{"title":"An Outlier Detection Approach to Recognize the Sources of a Process Failure within a Multivariate Poisson Process","authors":"Chia-Ding Hou, Rung-Hung Su","doi":"10.3390/math12182813","DOIUrl":null,"url":null,"abstract":"Among attribute processes, the number of nonconformities conforming to a Poisson distribution is among the most crucial quality attributes. Furthermore, owing to the variety of quality attributes, the significance of the multivariate Poisson process in industry cannot be overstated. An out-of-control multivariate Poisson process can be detected using an alarm on a multivariate control chart. Nevertheless, pinpointing the specific quality attributes that led to the process shifts is complex. The study focuses on the causes that lead to process shifts in multivariate Poisson processes, unlike the majority of studies examining shifts in multivariate normal processes. This paper initially presents a statistical method for detecting outliers in a multivariate Poisson distribution. Furthermore, a progressive testing algorithm is then developed to identify the variables responsible for a failure within a multivariate Poisson process. According to simulation results, the proposed approach can effectively determine the sources of a process fault within a multivariate Poisson process.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Among attribute processes, the number of nonconformities conforming to a Poisson distribution is among the most crucial quality attributes. Furthermore, owing to the variety of quality attributes, the significance of the multivariate Poisson process in industry cannot be overstated. An out-of-control multivariate Poisson process can be detected using an alarm on a multivariate control chart. Nevertheless, pinpointing the specific quality attributes that led to the process shifts is complex. The study focuses on the causes that lead to process shifts in multivariate Poisson processes, unlike the majority of studies examining shifts in multivariate normal processes. This paper initially presents a statistical method for detecting outliers in a multivariate Poisson distribution. Furthermore, a progressive testing algorithm is then developed to identify the variables responsible for a failure within a multivariate Poisson process. According to simulation results, the proposed approach can effectively determine the sources of a process fault within a multivariate Poisson process.
在多变量泊松过程中识别过程故障源的离群值检测方法
在属性过程中,符合泊松分布的不合格数量是最关键的质量属性之一。此外,由于质量属性的多样性,多元泊松过程在工业中的重要性怎么强调都不为过。失控的多元泊松过程可以通过多元控制图上的警报来检测。然而,确定导致过程转变的具体质量属性非常复杂。与大多数研究多变量正态过程偏移的研究不同,本研究重点关注导致多变量泊松过程偏移的原因。本文首先介绍了一种在多元泊松分布中检测异常值的统计方法。此外,本文还开发了一种渐进测试算法,以确定在多元泊松过程中造成故障的变量。根据模拟结果,所提出的方法能有效确定多元泊松过程中的过程故障源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信