Accelerating the Speed of Convergence for High-Order Methods to Solve Equations

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-09 DOI:10.3390/math12172785
Ramandeep Behl, Ioannis K. Argyros, Sattam Alharbi
{"title":"Accelerating the Speed of Convergence for High-Order Methods to Solve Equations","authors":"Ramandeep Behl, Ioannis K. Argyros, Sattam Alharbi","doi":"10.3390/math12172785","DOIUrl":null,"url":null,"abstract":"This article introduces a multistep method for developing sequences that solve Banach space-valued equations. It provides error estimates, a radius of convergence, and uniqueness results. Our approach improves the applicability of the recommended method and addresses challenges in applied science. The theoretical advancements are supported by comprehensive computational results, demonstrating the practical applicability and robustness of the earlier method. We ensure more reliable and precise solutions to Banach space-valued equations by providing computable error estimates and a clear radius of convergence for the considered method. We conclude that our work significantly improves the practical utility of multistep methods, offering a rigorous and computable approach to solving complex equations in Banach spaces, with strong theoretical and computational results.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"2016 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12172785","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a multistep method for developing sequences that solve Banach space-valued equations. It provides error estimates, a radius of convergence, and uniqueness results. Our approach improves the applicability of the recommended method and addresses challenges in applied science. The theoretical advancements are supported by comprehensive computational results, demonstrating the practical applicability and robustness of the earlier method. We ensure more reliable and precise solutions to Banach space-valued equations by providing computable error estimates and a clear radius of convergence for the considered method. We conclude that our work significantly improves the practical utility of multistep methods, offering a rigorous and computable approach to solving complex equations in Banach spaces, with strong theoretical and computational results.
加快高阶方程求解方法的收敛速度
本文介绍了一种多步骤方法,用于开发求解巴拿赫空间值方程的序列。它提供了误差估计、收敛半径和唯一性结果。我们的方法提高了推荐方法的适用性,并解决了应用科学中的难题。理论上的进步得到了全面计算结果的支持,证明了早期方法的实际适用性和稳健性。我们为所考虑的方法提供了可计算的误差估计和明确的收敛半径,从而确保巴拿赫空间值方程的解更加可靠和精确。我们的结论是,我们的工作极大地改进了多步方法的实用性,为解决巴拿赫空间中的复杂方程提供了一种严格的可计算方法,并具有强大的理论和计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信