Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Shengdong Mu, Boyu Liu, Jijian Gu, Chaolung Lien, Nedjah Nadia
{"title":"Research on Stock Index Prediction Based on the Spatiotemporal Attention BiLSTM Model","authors":"Shengdong Mu, Boyu Liu, Jijian Gu, Chaolung Lien, Nedjah Nadia","doi":"10.3390/math12182812","DOIUrl":null,"url":null,"abstract":"Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Stock index fluctuations are characterized by high noise and their accurate prediction is extremely challenging. To address this challenge, this study proposes a spatial–temporal–bidirectional long short-term memory (STBL) model, incorporating spatiotemporal attention mechanisms. The model enhances the analysis of temporal dependencies between data by introducing graph attention networks with multi-hop neighbor nodes while incorporating the temporal attention mechanism of long short-term memory (LSTM) to effectively address the potential interdependencies in the data structure. In addition, by assigning different learning weights to different neighbor nodes, the model can better integrate the correlation between node features. To verify the accuracy of the proposed model, this study utilized the closing prices of the Hong Kong Hang Seng Index (HSI) from 31 December 1986 to 31 December 2023 for analysis. By comparing it with nine other forecasting models, the experimental results show that the STBL model achieves more accurate predictions of the closing prices for short-term, medium-term, and long-term forecasts of the stock index.
基于时空注意力 BiLSTM 模型的股指预测研究
股指波动具有高噪声的特点,准确预测股指波动极具挑战性。为应对这一挑战,本研究提出了一种空间-时间-双向长短期记忆(STBL)模型,并将时空注意力机制纳入其中。该模型通过引入具有多跳邻居节点的图注意力网络来增强对数据间时间依赖性的分析,同时结合了长短期记忆(LSTM)的时间注意力机制,以有效解决数据结构中潜在的相互依赖关系。此外,通过为不同的邻居节点分配不同的学习权重,该模型可以更好地整合节点特征之间的相关性。为验证所提模型的准确性,本研究利用香港恒生指数(HSI)从 1986 年 12 月 31 日至 2023 年 12 月 31 日的收盘价进行分析。通过与其他九种预测模型的比较,实验结果表明,STBL 模型在股指的短期、中期和长期预测中,对收盘价的预测更为准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信