{"title":"Next-Generation Diagnostics: The Impact of Synthetic Data Generation on the Detection of Breast Cancer from Ultrasound Imaging","authors":"Hari Mohan Rai, Serhii Dashkevych, Joon Yoo","doi":"10.3390/math12182808","DOIUrl":null,"url":null,"abstract":"Breast cancer is one of the most lethal and widespread diseases affecting women worldwide. As a result, it is necessary to diagnose breast cancer accurately and efficiently utilizing the most cost-effective and widely used methods. In this research, we demonstrated that synthetically created high-quality ultrasound data outperformed conventional augmentation strategies for efficiently diagnosing breast cancer using deep learning. We trained a deep-learning model using the EfficientNet-B7 architecture and a large dataset of 3186 ultrasound images acquired from multiple publicly available sources, as well as 10,000 synthetically generated images using generative adversarial networks (StyleGAN3). The model was trained using five-fold cross-validation techniques and validated using four metrics: accuracy, recall, precision, and the F1 score measure. The results showed that integrating synthetically produced data into the training set increased the classification accuracy from 88.72% to 92.01% based on the F1 score, demonstrating the power of generative models to expand and improve the quality of training datasets in medical-imaging applications. This demonstrated that training the model using a larger set of data comprising synthetic images significantly improved its performance by more than 3% over the genuine dataset with common augmentation. Various data augmentation procedures were also investigated to improve the training set’s diversity and representativeness. This research emphasizes the relevance of using modern artificial intelligence and machine-learning technologies in medical imaging by providing an effective strategy for categorizing ultrasound images, which may lead to increased diagnostic accuracy and optimal treatment options. The proposed techniques are highly promising and have strong potential for future clinical application in the diagnosis of breast cancer.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is one of the most lethal and widespread diseases affecting women worldwide. As a result, it is necessary to diagnose breast cancer accurately and efficiently utilizing the most cost-effective and widely used methods. In this research, we demonstrated that synthetically created high-quality ultrasound data outperformed conventional augmentation strategies for efficiently diagnosing breast cancer using deep learning. We trained a deep-learning model using the EfficientNet-B7 architecture and a large dataset of 3186 ultrasound images acquired from multiple publicly available sources, as well as 10,000 synthetically generated images using generative adversarial networks (StyleGAN3). The model was trained using five-fold cross-validation techniques and validated using four metrics: accuracy, recall, precision, and the F1 score measure. The results showed that integrating synthetically produced data into the training set increased the classification accuracy from 88.72% to 92.01% based on the F1 score, demonstrating the power of generative models to expand and improve the quality of training datasets in medical-imaging applications. This demonstrated that training the model using a larger set of data comprising synthetic images significantly improved its performance by more than 3% over the genuine dataset with common augmentation. Various data augmentation procedures were also investigated to improve the training set’s diversity and representativeness. This research emphasizes the relevance of using modern artificial intelligence and machine-learning technologies in medical imaging by providing an effective strategy for categorizing ultrasound images, which may lead to increased diagnostic accuracy and optimal treatment options. The proposed techniques are highly promising and have strong potential for future clinical application in the diagnosis of breast cancer.