{"title":"Fault Monitoring Method for the Process Industry System Based on the Improved Dense Connection Network","authors":"Jiarula Yasenjiang, Zhigang Lan, Kai Wang, Luhui Lv, Chao He, Yingjun Zhao, Wenhao Wang, Tian Gao","doi":"10.3390/math12182843","DOIUrl":null,"url":null,"abstract":"The safety of chemical processes is of critical importance. However, traditional fault monitoring methods have insufficiently studied the monitoring accuracy of multi-channel data and have not adequately considered the impact of noise on industrial processes. To address this issue, this paper proposes a neural network-based model, DSCBAM-DenseNet, which integrates depthwise separable convolution and attention modules to fuse multi-channel data features and enhance the model’s noise resistance. We simulated a real environment by adding Gaussian noise with different signal-to-noise ratios to the Tennessee Eastman process dataset and trained the model using multi-channel data. The experimental results show that this model outperforms traditional models in both fault diagnosis accuracy and noise resistance. Further research on a compressor unit engineering instance validated the superiority of the model.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"107 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182843","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The safety of chemical processes is of critical importance. However, traditional fault monitoring methods have insufficiently studied the monitoring accuracy of multi-channel data and have not adequately considered the impact of noise on industrial processes. To address this issue, this paper proposes a neural network-based model, DSCBAM-DenseNet, which integrates depthwise separable convolution and attention modules to fuse multi-channel data features and enhance the model’s noise resistance. We simulated a real environment by adding Gaussian noise with different signal-to-noise ratios to the Tennessee Eastman process dataset and trained the model using multi-channel data. The experimental results show that this model outperforms traditional models in both fault diagnosis accuracy and noise resistance. Further research on a compressor unit engineering instance validated the superiority of the model.
期刊介绍:
Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.