{"title":"A High-Scalability Graph Modification System for Large-Scale Networks","authors":"Shaobin Xu, Minghui Sun, Jun Qin","doi":"10.1111/cgf.15191","DOIUrl":null,"url":null,"abstract":"<p>Modifying network results is the most intuitive way to inject domain knowledge into network detection algorithms to improve their performance. While advances in computation scalability have made detecting large-scale networks possible, the human ability to modify such networks has not scaled accordingly, resulting in a huge ‘interaction gap’. Most existing works only support navigating and modifying edges one by one in a graph visualization, which causes a significant interaction burden when faced with large-scale networks. In this work, we propose a novel graph pattern mining algorithm based on the minimum description length (MDL) principle to partition and summarize multi-feature and isomorphic sub-graph matches. The mined sub-graph patterns can be utilized as mediums for modifying large-scale networks. Combining two traditional approaches, we introduce a new coarse-middle-fine graph modification paradigm (<i>i.e</i>. query graph-based modification <span></span><math></math> sub-graph pattern-based modification <span></span><math></math> raw edge-based modification). We further present a graph modification system that supports the graph modification paradigm for improving the scalability of modifying detected large-scale networks. We evaluate the performance of our graph pattern mining algorithm through an experimental study, demonstrate the usefulness of our system through a case study, and illustrate the efficiency of our graph modification paradigm through a user study.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15191","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Modifying network results is the most intuitive way to inject domain knowledge into network detection algorithms to improve their performance. While advances in computation scalability have made detecting large-scale networks possible, the human ability to modify such networks has not scaled accordingly, resulting in a huge ‘interaction gap’. Most existing works only support navigating and modifying edges one by one in a graph visualization, which causes a significant interaction burden when faced with large-scale networks. In this work, we propose a novel graph pattern mining algorithm based on the minimum description length (MDL) principle to partition and summarize multi-feature and isomorphic sub-graph matches. The mined sub-graph patterns can be utilized as mediums for modifying large-scale networks. Combining two traditional approaches, we introduce a new coarse-middle-fine graph modification paradigm (i.e. query graph-based modification sub-graph pattern-based modification raw edge-based modification). We further present a graph modification system that supports the graph modification paradigm for improving the scalability of modifying detected large-scale networks. We evaluate the performance of our graph pattern mining algorithm through an experimental study, demonstrate the usefulness of our system through a case study, and illustrate the efficiency of our graph modification paradigm through a user study.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.