Multiplicity results for critical p $p$ -biharmonic problems

Pub Date : 2024-08-29 DOI:10.1002/mana.202300535
Said El Manouni, Kanishka Perera
{"title":"Multiplicity results for critical \n \n p\n $p$\n -biharmonic problems","authors":"Said El Manouni,&nbsp;Kanishka Perera","doi":"10.1002/mana.202300535","DOIUrl":null,"url":null,"abstract":"<p>We prove new multiplicity results for some critical growth <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-biharmonic problems in bounded domains. More specifically, we show that each of the problems considered here has arbitrarily many solutions for all sufficiently large values of a certain parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda &amp;gt; 0$</annotation>\n </semantics></math>. In particular, the number of solutions goes to infinity as <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\lambda \\rightarrow \\infty$</annotation>\n </semantics></math>. We also give an explicit lower bound on <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math> in order to have a given number of solutions. This lower bound will be in terms of an unbounded sequence of eigenvalues of a related eigenvalue problem. Our multiplicity results are new even in the semilinear case <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p = 2$</annotation>\n </semantics></math>. The proofs are based on an abstract critical point theorem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove new multiplicity results for some critical growth p $p$ -biharmonic problems in bounded domains. More specifically, we show that each of the problems considered here has arbitrarily many solutions for all sufficiently large values of a certain parameter λ > 0 $\lambda &gt; 0$ . In particular, the number of solutions goes to infinity as λ $\lambda \rightarrow \infty$ . We also give an explicit lower bound on λ $\lambda$ in order to have a given number of solutions. This lower bound will be in terms of an unbounded sequence of eigenvalues of a related eigenvalue problem. Our multiplicity results are new even in the semilinear case p = 2 $p = 2$ . The proofs are based on an abstract critical point theorem.

分享
查看原文
临界 p$p$ 双谐波问题的多重性结果
我们为有界域中的一些临界增长-双谐波问题证明了新的多重性结果。更具体地说,我们证明了这里所考虑的每个问题在某个参数 . 的所有足够大的值下都有任意多的解。特别是,解的数量随着 .我们还给出了一个明确的下限,即要有给定数量的解,就必须有下限。这个下界将以相关特征值问题的无界特征值序列来表示。即使在半线性问题中,我们的多重性结果也是全新的。证明基于抽象临界点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信