Monotonicities of quasi-normed Calderón–Lozanovskiĭ spaces with applications to approximation problems

Pub Date : 2024-09-02 DOI:10.1002/mana.202400013
Paweł Foralewski, Paweł Kolwicz
{"title":"Monotonicities of quasi-normed Calderón–Lozanovskiĭ spaces with applications to approximation problems","authors":"Paweł Foralewski,&nbsp;Paweł Kolwicz","doi":"10.1002/mana.202400013","DOIUrl":null,"url":null,"abstract":"<p>We consider the geometric structure of quasi-normed Calderón–Lozanovskiĭ spaces. First, we study relations between the quasi-norm and the quasi-modular “near zero” and “near one,” which are fundamental for the theory. With their help, we provide a precise description of the basic monotonicity properties. In comparison with the well-known normed case, we develop a number of new techniques and methods, among which the conditions <span></span><math>\n <semantics>\n <msub>\n <mi>Δ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\Delta _{\\varepsilon }$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>Δ</mi>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n <mi>s</mi>\n <mi>t</mi>\n <mi>r</mi>\n </mrow>\n </msub>\n <annotation>$\\Delta _{2-str}$</annotation>\n </semantics></math> play a crucial role. From our general results, we conclude the criteria for monotonicity properties in quasi-normed Orlicz spaces, which are new even in this particular context. We consider both the function and the sequence case as well as we admit degenerated Orlicz functions, which provides us with a maximal class of spaces under consideration. We also discuss the applications of suitable properties to the best dominated approximation problems in quasi-Banach lattices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the geometric structure of quasi-normed Calderón–Lozanovskiĭ spaces. First, we study relations between the quasi-norm and the quasi-modular “near zero” and “near one,” which are fundamental for the theory. With their help, we provide a precise description of the basic monotonicity properties. In comparison with the well-known normed case, we develop a number of new techniques and methods, among which the conditions Δ ε $\Delta _{\varepsilon }$ and Δ 2 s t r $\Delta _{2-str}$ play a crucial role. From our general results, we conclude the criteria for monotonicity properties in quasi-normed Orlicz spaces, which are new even in this particular context. We consider both the function and the sequence case as well as we admit degenerated Orlicz functions, which provides us with a maximal class of spaces under consideration. We also discuss the applications of suitable properties to the best dominated approximation problems in quasi-Banach lattices.

分享
查看原文
准规范 Calderón-Lozanovskiĭ 空间的单调性及其在近似问题中的应用
我们考虑了准规范卡尔德隆-洛扎诺夫斯基空间的几何结构。首先,我们研究了准规范与准模态 "近零 "和 "近一 "之间的关系,这是理论的基础。在它们的帮助下,我们提供了基本单调性性质的精确描述。与众所周知的规范情况相比,我们开发了许多新技术和新方法,其中条件和起着至关重要的作用。根据我们的一般结果,我们总结出了准规范奥立兹空间单调性属性的标准,即使在这种特殊情况下也是全新的。我们同时考虑了函数和序列的情况,并承认退化的奥立兹函数,这为我们提供了所要考虑的最大一类空间。我们还讨论了准巴纳赫网格中最佳支配近似问题的适当性质应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信