Localized operators on weighted Herz spaces

Pub Date : 2024-09-02 DOI:10.1002/mana.202400086
Kwok-Pun Ho
{"title":"Localized operators on weighted Herz spaces","authors":"Kwok-Pun Ho","doi":"10.1002/mana.202400086","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of localized operators. We extend the boundedness of the localized operators from the weighted Lebesgue spaces to the weighted Herz spaces. The localized operators include the Hardy operator, the Riemann–Liouville fractional integrals, the general Hardy-type operators, the geometric mean operator, and the one-sided maximal function. Therefore, this paper extends the mapping properties of the the Hardy operator, the Riemann–Liouville fractional integrals, the general Hardy-type operators, the geometric mean operator, and the one-sided maximal function to the weighted Herz spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of localized operators. We extend the boundedness of the localized operators from the weighted Lebesgue spaces to the weighted Herz spaces. The localized operators include the Hardy operator, the Riemann–Liouville fractional integrals, the general Hardy-type operators, the geometric mean operator, and the one-sided maximal function. Therefore, this paper extends the mapping properties of the the Hardy operator, the Riemann–Liouville fractional integrals, the general Hardy-type operators, the geometric mean operator, and the one-sided maximal function to the weighted Herz spaces.

分享
查看原文
加权赫兹空间上的局部算子
我们引入了局部算子的概念。我们将局部化算子的有界性从加权勒贝格空间扩展到加权赫兹空间。局部化算子包括哈代算子、黎曼-刘维尔分数积分、一般哈代型算子、几何平均数算子和单边最大函数。因此,本文将哈代算子、黎曼-刘维尔分数积分、一般哈代型算子、几何平均算子和单边最大函数的映射性质扩展到了加权赫兹空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信