Patient-specific prediction of regional lung mechanics in ARDS patients with physics-based models: A validation study

Maximilian Rixner, Maximilian Ludwig, Matthias Lindner, Inéz Frerichs, Armin Sablewski, Karl-Robert Wichmann, Max-Carl Wachter, Kei W. Müller, Dirk Schädler, Wolfgang A. Wall, Jonas Biehler, Tobias Becher
{"title":"Patient-specific prediction of regional lung mechanics in ARDS patients with physics-based models: A validation study","authors":"Maximilian Rixner, Maximilian Ludwig, Matthias Lindner, Inéz Frerichs, Armin Sablewski, Karl-Robert Wichmann, Max-Carl Wachter, Kei W. Müller, Dirk Schädler, Wolfgang A. Wall, Jonas Biehler, Tobias Becher","doi":"arxiv-2408.14607","DOIUrl":null,"url":null,"abstract":"The choice of lung protective ventilation settings for mechanical ventilation\nhas a considerable impact on patient outcome, yet identifying optimal\nventilatory settings for individual patients remains highly challenging due to\nthe inherent inter- and intra-patient pathophysiological variability. In this\nvalidation study, we demonstrate that physics-based computational lung models\ntailored to individual patients can resolve this variability, allowing us to\npredict the otherwise unknown local state of the pathologically affected lung\nduring mechanical ventilation. For seven ARDS patients undergoing invasive\nmechanical ventilation, physics-based, patient-specific lung models were\ncreated using chest CT scans and ventilatory data. By numerically resolving the\ninteraction of the pathological lung with the airway pressure and flow imparted\nby the ventilator, we predict the time-dependent and heterogeneous local state\nof the lung for each patient and compare it against the regional ventilation\nobtained from bedside monitoring using Electrical Impedance Tomography.\nExcellent agreement between numerical simulations and experimental data was\nobtained, with the model-predicted anteroposterior ventilation profile\nachieving a Pearson correlation of 96% with the clinical reference data. Even\nwhen considering the regional ventilation within the entire transverse chest\ncross-section and across the entire dynamic ventilation range, an average\ncorrelation of more than 81% and an average root mean square error of less than\n15% were achieved. The results of this first systematic validation study\ndemonstrate the ability of computational models to provide clinically relevant\ninformation and thereby open the door for a truly patient-specific choice of\nventilator settings on the basis of both individual anatomy and\npathophysiology.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"390 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The choice of lung protective ventilation settings for mechanical ventilation has a considerable impact on patient outcome, yet identifying optimal ventilatory settings for individual patients remains highly challenging due to the inherent inter- and intra-patient pathophysiological variability. In this validation study, we demonstrate that physics-based computational lung models tailored to individual patients can resolve this variability, allowing us to predict the otherwise unknown local state of the pathologically affected lung during mechanical ventilation. For seven ARDS patients undergoing invasive mechanical ventilation, physics-based, patient-specific lung models were created using chest CT scans and ventilatory data. By numerically resolving the interaction of the pathological lung with the airway pressure and flow imparted by the ventilator, we predict the time-dependent and heterogeneous local state of the lung for each patient and compare it against the regional ventilation obtained from bedside monitoring using Electrical Impedance Tomography. Excellent agreement between numerical simulations and experimental data was obtained, with the model-predicted anteroposterior ventilation profile achieving a Pearson correlation of 96% with the clinical reference data. Even when considering the regional ventilation within the entire transverse chest cross-section and across the entire dynamic ventilation range, an average correlation of more than 81% and an average root mean square error of less than 15% were achieved. The results of this first systematic validation study demonstrate the ability of computational models to provide clinically relevant information and thereby open the door for a truly patient-specific choice of ventilator settings on the basis of both individual anatomy and pathophysiology.
利用基于物理学的模型对 ARDS 患者的区域肺力学进行特异性预测:验证研究
机械通气中肺部保护性通气设置的选择对患者的预后有相当大的影响,但由于患者之间和患者内部固有的病理生理学变异性,确定个体患者的最佳通气设置仍然极具挑战性。在这项验证研究中,我们证明了基于物理学的计算肺模型可以解决这种变异性,使我们能够预测机械通气期间受病理影响肺部的未知局部状态。我们利用胸部 CT 扫描和通气数据,为七名接受有创机械通气的 ARDS 患者创建了基于物理学的患者特异性肺模型。通过数值解析病变肺部与呼吸机提供的气道压力和气流之间的相互作用,我们预测了每位患者肺部随时间变化的异质性局部状态,并将其与使用电阻抗断层扫描进行床旁监测获得的区域通气情况进行了比较。即使考虑到整个横向胸横截面内和整个动态通气范围内的区域通气,平均相关性也超过了 81%,平均均方根误差小于 15%。这项首次系统性验证研究的结果证明了计算模型提供临床相关信息的能力,从而为根据个体解剖学和病理生理学真正针对患者选择通气设置打开了大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信