TG-LMM: Enhancing Medical Image Segmentation Accuracy through Text-Guided Large Multi-Modal Model

Yihao Zhao, Enhao Zhong, Cuiyun Yuan, Yang Li, Man Zhao, Chunxia Li, Jun Hu, Chenbin Liu
{"title":"TG-LMM: Enhancing Medical Image Segmentation Accuracy through Text-Guided Large Multi-Modal Model","authors":"Yihao Zhao, Enhao Zhong, Cuiyun Yuan, Yang Li, Man Zhao, Chunxia Li, Jun Hu, Chenbin Liu","doi":"arxiv-2409.03412","DOIUrl":null,"url":null,"abstract":"We propose TG-LMM (Text-Guided Large Multi-Modal Model), a novel approach\nthat leverages textual descriptions of organs to enhance segmentation accuracy\nin medical images. Existing medical image segmentation methods face several\nchallenges: current medical automatic segmentation models do not effectively\nutilize prior knowledge, such as descriptions of organ locations; previous\ntext-visual models focus on identifying the target rather than improving the\nsegmentation accuracy; prior models attempt to use prior knowledge to enhance\naccuracy but do not incorporate pre-trained models. To address these issues,\nTG-LMM integrates prior knowledge, specifically expert descriptions of the\nspatial locations of organs, into the segmentation process. Our model utilizes\npre-trained image and text encoders to reduce the number of training parameters\nand accelerate the training process. Additionally, we designed a comprehensive\nimage-text information fusion structure to ensure thorough integration of the\ntwo modalities of data. We evaluated TG-LMM on three authoritative medical\nimage datasets, encompassing the segmentation of various parts of the human\nbody. Our method demonstrated superior performance compared to existing\napproaches, such as MedSAM, SAM and nnUnet.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose TG-LMM (Text-Guided Large Multi-Modal Model), a novel approach that leverages textual descriptions of organs to enhance segmentation accuracy in medical images. Existing medical image segmentation methods face several challenges: current medical automatic segmentation models do not effectively utilize prior knowledge, such as descriptions of organ locations; previous text-visual models focus on identifying the target rather than improving the segmentation accuracy; prior models attempt to use prior knowledge to enhance accuracy but do not incorporate pre-trained models. To address these issues, TG-LMM integrates prior knowledge, specifically expert descriptions of the spatial locations of organs, into the segmentation process. Our model utilizes pre-trained image and text encoders to reduce the number of training parameters and accelerate the training process. Additionally, we designed a comprehensive image-text information fusion structure to ensure thorough integration of the two modalities of data. We evaluated TG-LMM on three authoritative medical image datasets, encompassing the segmentation of various parts of the human body. Our method demonstrated superior performance compared to existing approaches, such as MedSAM, SAM and nnUnet.
TG-LMM:通过文本引导的大型多模态模型提高医学图像分割精度
我们提出了 TG-LMM(文本引导的大型多模态模型),这是一种利用器官的文本描述来提高医学图像分割准确性的新方法。现有的医学图像分割方法面临着几个挑战:目前的医学自动分割模型不能有效利用先验知识,如器官位置的描述;先验的文本-视觉模型侧重于识别目标,而不是提高这些分割的准确性;先验模型试图利用先验知识来提高准确性,但没有结合预先训练好的模型。为了解决这些问题,TG-LMM 将先验知识,特别是专家对器官空间位置的描述,整合到了分割过程中。我们的模型利用预先训练好的图像和文本编码器来减少训练参数的数量并加速训练过程。此外,我们还设计了一个全面的图像-文本信息融合结构,以确保彻底整合两种模式的数据。我们在三个权威医学图像数据集上对 TG-LMM 进行了评估,其中包括人体各部位的分割。与 MedSAM、SAM 和 nnUnet 等现有方法相比,我们的方法表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信