Exponential expressivity of ReLUk neural networks on Gevrey classes with point singularities

Pub Date : 2024-08-27 DOI:10.21136/am.2024.0052-24
Joost A. A. Opschoor, Christoph Schwab
{"title":"Exponential expressivity of ReLUk neural networks on Gevrey classes with point singularities","authors":"Joost A. A. Opschoor, Christoph Schwab","doi":"10.21136/am.2024.0052-24","DOIUrl":null,"url":null,"abstract":"<p>We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝ<sup>d</sup>, <i>d</i> = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.</p><p>As intermediate result, we prove that continuous, piecewise polynomial high order (“<i>p</i>-version”) finite elements with elementwise polynomial degree <i>p</i> ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝ<sup><i>d</i></sup>, <i>d</i> ⩾ 2, can be <i>exactly emulated</i> by neural networks combining ReLU and ReLU<sup>2</sup> activations.</p><p>On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the <i>hp</i> finite element space of I. M. Babuška and B. Q. Guo.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.2024.0052-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝd, d = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.

As intermediate result, we prove that continuous, piecewise polynomial high order (“p-version”) finite elements with elementwise polynomial degree p ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝd, d ⩾ 2, can be exactly emulated by neural networks combining ReLU and ReLU2 activations.

On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the hp finite element space of I. M. Babuška and B. Q. Guo.

分享
查看原文
具有点奇异性的 Gevrey 类上 ReLUk 神经网络的指数表达能力
我们分析了有界多顶域 D ⊂ ℝd, d = 2, 3 中具有点奇异性的光滑函数的深度神经网络仿真率。我们用神经元的数量和非零系数的数量证明了 Sobolev 空间中以 D 中加权 Sobolev 标度定义的 Gevrey 不规则解类的指数仿真率,D 中包括 I. M. Babuska 和 B. Q. Guo 的可数规范空间。作为中间结果,我们证明了在多面体域 D ⊂ ℝd, d ⩾ 2 的任意、规则、简单分区上,具有元素多项式度 p∈ ℕ 的连续、片断多项式高阶("p-版本")有限元可以通过结合 ReLU 和 ReLU2 激活的神经网络精确模拟。在形状规则、简单分区的多面体域 D 上,神经元数量和非零参数数量都与 I. M. Babuška 和 B. Q. Guo 的 hp 有限元空间的自由度数量成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信