Nalimela Pothanna, Podila Aparna, M. Pavankumar Reddy, R. Archana Reddy, M. Clement Joe Anand
{"title":"Thermo-viscous fluid flow in porous slab bounded between two impermeable parallel plates in relative motion: Four stage algorithm approach","authors":"Nalimela Pothanna, Podila Aparna, M. Pavankumar Reddy, R. Archana Reddy, M. Clement Joe Anand","doi":"10.21136/am.2024.0144-23","DOIUrl":null,"url":null,"abstract":"<p>The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects are noticed on velocity and temperature distributions. These effects can be attributed to Darcy’s friction offered by the medium. The approximation results obtained in the present paper are in good agreement with the earlier numerical results of thermo-viscous fluid flows in plane geometry.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.2024.0144-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of an approximate solution of thermo-viscous fluid flow in a porous slab bounded between two impermeable parallel plates in relative motion is examined in this paper. The two plates are kept at two different temperatures and the flow is generated by a constant pressure gradient together with the motion of one of the plates relative to the other. The velocity and temperature distributions have been obtained by a four-stage algorithm approach. It is worth mentioning that reverse effects are noticed on velocity and temperature distributions. These effects can be attributed to Darcy’s friction offered by the medium. The approximation results obtained in the present paper are in good agreement with the earlier numerical results of thermo-viscous fluid flows in plane geometry.