Reducing Entanglement with Physically Inspired Fermion-To-Qubit Mappings

Teodor Parella-Dilmé, Korbinian Kottmann, Leonardo Zambrano, Luke Mortimer, Jakob S. Kottmann, Antonio Acín
{"title":"Reducing Entanglement with Physically Inspired Fermion-To-Qubit Mappings","authors":"Teodor Parella-Dilmé, Korbinian Kottmann, Leonardo Zambrano, Luke Mortimer, Jakob S. Kottmann, Antonio Acín","doi":"10.1103/prxquantum.5.030333","DOIUrl":null,"url":null,"abstract":"In <i>ab initio</i> electronic structure simulations, fermion-to-qubit mappings represent the initial encoding step from the problem of fermions into a problem of qubits. This work introduces a physically inspired method for constructing mappings that significantly simplify entanglement requirements when one is simulating states of interest. The presence of electronic excitations drives the construction of our mappings, reducing correlations for target states in the qubit space. To benchmark our method, we simulate ground-states of small molecules and observe an enhanced performance when compared with classical and quantum variational approaches from prior research using conventional mappings. In particular, on the quantum side, our mappings require a reduced number of entangling layers to achieve accuracy for <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>LiH</mi></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"normal\">H</mi></mrow><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">(</mo><msub><mrow><mi mathvariant=\"normal\">H</mi></mrow><mn>2</mn></msub><msub><mo stretchy=\"false\">)</mo><mn>2</mn></msub></math>, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup><mrow><mi mathvariant=\"normal\">H</mi></mrow><mn>4</mn><mo>≠</mo></msubsup></math> stretching, and benzene’s <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>π</mi></math> system using the RY hardware-efficient ansatz. In addition, our mappings also provide an enhanced ground-state simulation performance in the density matrix renormalization group algorithm for the <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"normal\">N</mi></mrow><mn>2</mn></msub></math> molecule.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In ab initio electronic structure simulations, fermion-to-qubit mappings represent the initial encoding step from the problem of fermions into a problem of qubits. This work introduces a physically inspired method for constructing mappings that significantly simplify entanglement requirements when one is simulating states of interest. The presence of electronic excitations drives the construction of our mappings, reducing correlations for target states in the qubit space. To benchmark our method, we simulate ground-states of small molecules and observe an enhanced performance when compared with classical and quantum variational approaches from prior research using conventional mappings. In particular, on the quantum side, our mappings require a reduced number of entangling layers to achieve accuracy for LiH, H2, (H2)2, H4 stretching, and benzene’s π system using the RY hardware-efficient ansatz. In addition, our mappings also provide an enhanced ground-state simulation performance in the density matrix renormalization group algorithm for the N2 molecule.

Abstract Image

利用受物理启发的费米子-丘比特映射减少纠缠
在 ab initio 电子结构模拟中,费米子到量子比特映射是将费米子问题转化为量子比特问题的初始编码步骤。这项研究介绍了一种受物理启发的映射构建方法,它能在模拟感兴趣的状态时大大简化纠缠要求。电子激发的存在推动了我们映射的构建,降低了量子比特空间中目标状态的相关性。为了对我们的方法进行基准测试,我们模拟了小分子的基态,并观察到与之前研究中使用传统映射的经典和量子变分方法相比,我们的方法具有更强的性能。特别是在量子方面,我们的映射需要减少纠缠层的数量,以达到使用 RY 硬件高效解析法计算 LiH、H2、(H2)2、H4≠拉伸和苯π系统的精度。此外,我们的映射还增强了 N2 分子在密度矩阵重正化群算法中的基态模拟性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信