Fully Scalable Randomized Benchmarking Without Motion Reversal

Jordan Hines, Daniel Hothem, Robin Blume-Kohout, Birgitta Whaley, Timothy Proctor
{"title":"Fully Scalable Randomized Benchmarking Without Motion Reversal","authors":"Jordan Hines, Daniel Hothem, Robin Blume-Kohout, Birgitta Whaley, Timothy Proctor","doi":"10.1103/prxquantum.5.030334","DOIUrl":null,"url":null,"abstract":"We introduce <i>binary randomized benchmarking (BiRB)</i>, a protocol that streamlines traditional RB by using circuits consisting almost entirely of independent identically distributed (IID) layers of gates. BiRB reliably and efficiently extracts the average error rate of a Clifford gate set by sending tensor-product eigenstates of random Pauli operators through random circuits with IID layers. Unlike existing RB methods, BiRB does not use motion reversal circuits—i.e., circuits that implement the identity (or a Pauli) operator—which simplifies both the method and the theory proving its reliability. Furthermore, this simplicity enables scaling BiRB to many more qubits than the most widely used RB methods.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce binary randomized benchmarking (BiRB), a protocol that streamlines traditional RB by using circuits consisting almost entirely of independent identically distributed (IID) layers of gates. BiRB reliably and efficiently extracts the average error rate of a Clifford gate set by sending tensor-product eigenstates of random Pauli operators through random circuits with IID layers. Unlike existing RB methods, BiRB does not use motion reversal circuits—i.e., circuits that implement the identity (or a Pauli) operator—which simplifies both the method and the theory proving its reliability. Furthermore, this simplicity enables scaling BiRB to many more qubits than the most widely used RB methods.

Abstract Image

无运动反向的完全可扩展随机基准测试
我们介绍了二进制随机基准(BiRB),这是一种通过使用几乎完全由独立同分布(IID)层门组成的电路来简化传统 RB 的协议。BiRB 通过 IID 层随机电路发送随机保利算子的张量乘积特征状态,从而可靠、高效地提取克利福德门集的平均错误率。与现有的 RB 方法不同,BiRB 不使用运动反转电路,即实现特征(或保利)算子的电路,从而简化了方法和证明其可靠性的理论。此外,与最广泛使用的 RB 方法相比,这种简单性使得 BiRB 能够扩展到更多的量子比特。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信