Flip-Chip-Based Fast Inductive Parity Readout of a Planar Superconducting Island

M. Hinderling, S.C. ten Kate, D.Z. Haxell, M. Coraiola, S. Paredes, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, D. Sabonis, F. Nichele
{"title":"Flip-Chip-Based Fast Inductive Parity Readout of a Planar Superconducting Island","authors":"M. Hinderling, S.C. ten Kate, D.Z. Haxell, M. Coraiola, S. Paredes, E. Cheah, F. Krizek, R. Schott, W. Wegscheider, D. Sabonis, F. Nichele","doi":"10.1103/prxquantum.5.030337","DOIUrl":null,"url":null,"abstract":"The properties of superconducting devices depend sensitively on the parity (even or odd) of the quasiparticles that they contain. Encoding quantum information in the parity degree of freedom is central in several emerging solid-state qubit architectures, including in hybrid superconductor-semiconductor devices. In the latter case, accurate, nondestructive, and time-resolved parity measurements are a challenging issue. Here, we report on control and real-time parity measurement in a superconducting island embedded in a superconducting loop and realized in a hybrid two-dimensional heterostructure using a microwave resonator. To avoid microwave losses impeding time-resolved measurements, the device and readout resonator are located on separate chips, connected via flip-chip bonding, and couple inductively through vacuum. The superconducting resonator detects the parity-dependent circuit inductance, allowing for fast parity readout. We have resolved even- and odd-parity states with a signal-to-noise ratio of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>SNR</mi><mo>≈</mo><mn>3</mn></math> for an integration time of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>20</mn><mspace width=\"0.2em\"></mspace><mtext fontfamily=\"times\">μ</mtext><mrow><mi mathvariant=\"normal\">s</mi></mrow></math> and a detection fidelity exceeding <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>98</mn><mi mathvariant=\"normal\">%</mi></math>. The real-time parity measurement shows a state lifetime extending into the millisecond range. Our approach will lead to a better understanding of coherence-limiting mechanisms in superconducting quantum hardware and help to advance inductive-readout schemes for hybrid qubits.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of superconducting devices depend sensitively on the parity (even or odd) of the quasiparticles that they contain. Encoding quantum information in the parity degree of freedom is central in several emerging solid-state qubit architectures, including in hybrid superconductor-semiconductor devices. In the latter case, accurate, nondestructive, and time-resolved parity measurements are a challenging issue. Here, we report on control and real-time parity measurement in a superconducting island embedded in a superconducting loop and realized in a hybrid two-dimensional heterostructure using a microwave resonator. To avoid microwave losses impeding time-resolved measurements, the device and readout resonator are located on separate chips, connected via flip-chip bonding, and couple inductively through vacuum. The superconducting resonator detects the parity-dependent circuit inductance, allowing for fast parity readout. We have resolved even- and odd-parity states with a signal-to-noise ratio of SNR3 for an integration time of 20μs and a detection fidelity exceeding 98%. The real-time parity measurement shows a state lifetime extending into the millisecond range. Our approach will lead to a better understanding of coherence-limiting mechanisms in superconducting quantum hardware and help to advance inductive-readout schemes for hybrid qubits.

Abstract Image

基于倒装芯片的平面超导岛快速感应奇偶校验读出器
超导设备的特性敏感地取决于其所包含的准粒子的奇偶性(偶数或奇数)。在一些新兴的固态量子比特架构中,包括在混合超导体-半导体器件中,奇偶性自由度量子信息的编码是核心所在。在后一种情况下,准确、无损和时间分辨的奇偶性测量是一个具有挑战性的问题。在这里,我们报告了嵌入超导环路的超导岛的控制和实时奇偶性测量,该超导岛是在使用微波谐振器的混合二维异质结构中实现的。为避免微波损耗妨碍时间分辨测量,器件和读出谐振器位于不同的芯片上,通过倒装芯片键合连接,并通过真空进行感应耦合。超导谐振器可检测与奇偶校验相关的电路电感,从而实现快速奇偶校验读出。在 20μs 的积分时间内,我们分辨出了偶奇偶状态,信噪比为 SNR≈3,检测保真度超过 98%。实时奇偶校验测量显示,状态寿命可达毫秒级。我们的方法将有助于更好地理解超导量子硬件中的相干限制机制,并有助于推进混合量子比特的感应读出方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信