Superconducting Qubits above 20 GHz Operating over 200 mK

Alexander Anferov, Shannon P. Harvey, Fanghui Wan, Jonathan Simon, David I. Schuster
{"title":"Superconducting Qubits above 20 GHz Operating over 200 mK","authors":"Alexander Anferov, Shannon P. Harvey, Fanghui Wan, Jonathan Simon, David I. Schuster","doi":"10.1103/prxquantum.5.030347","DOIUrl":null,"url":null,"abstract":"Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium-trilayer junctions, which have reduced sensitivity to quasiparticles due to the higher superconducting transition temperature of niobium, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mspace width=\"0.2em\"></mspace><mtext fontfamily=\"times\">μ</mtext><mrow><mi mathvariant=\"normal\">s</mi></mrow></math>, corresponding to average qubit quality factors of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mn>5</mn></msup></math>, and find that decoherence is unaffected by quasiparticles up to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mspace width=\"0.2em\"></mspace><mrow><mi mathvariant=\"normal\">K</mi></mrow></math>. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>250</mn><mspace width=\"0.2em\"></mspace><mi>mK</mi></math> while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat-dissipation budgets, and introduces a material platform for even-higher-frequency qubits.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium-trilayer junctions, which have reduced sensitivity to quasiparticles due to the higher superconducting transition temperature of niobium, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about 1μs, corresponding to average qubit quality factors of approximately 105, and find that decoherence is unaffected by quasiparticles up to 1K. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately 250mK while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat-dissipation budgets, and introduces a material platform for even-higher-frequency qubits.

Abstract Image

工作频率超过 20 GHz 的超导质子,工作温度超过 200 mK
目前最先进的超导微波量子比特被冷却到极低的温度,以避免退相干源。更高的量子比特工作温度将显著增加可用的冷却功率,这对于增加量子计算架构中的量子比特数量以及在需要增加散热的实验中集成量子比特来说是非常理想的。要在更高温度下运行超导量子比特,就必须解决准粒子退相干问题(对于超过 160 mK 的铝结而言,退相干问题变得非常严重)和热微波光子的去相干问题(超过 50 mK 就会出现问题)。由于铌的超导转变温度较高,低损耗铌-三层结对准粒子的敏感性降低,因此我们利用这种结制造出了比以前研究频率更高的跨子,最高可达 24 GHz。我们测得的退相干和去相干时间约为 1μs,相当于约 105 的平均量子比特品质因数,并发现退相干在 1K 以下不受类粒子的影响。在没有类粒子弛豫的情况下,我们能够探索纯热源的退相干性,发现我们的量子比特可以在大约 250mK 的温度下运行,同时保持类似的性能。这些量子比特的热弹性为量子处理器的扩展提供了新的选择,使混合量子实验能够实现高热耗散预算,并为更高频率的量子比特引入了一个材料平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信