Low Thermal Resistance of Diamond-AlGaN Interfaces Achieved Using Carbide Interlayers

Henry T. Aller, Thomas W. Pfeifer, Abdullah Mamun, Kenny Huynh, Marko Tadjer, Tatyana Feygelson, Karl Hobart, Travis Anderson, Bradford Pate, Alan Jacobs, James Spencer Lundh, Mark Goorsky, Asif Khan, Patrick Hopkins, Samuel Graham
{"title":"Low Thermal Resistance of Diamond-AlGaN Interfaces Achieved Using Carbide Interlayers","authors":"Henry T. Aller, Thomas W. Pfeifer, Abdullah Mamun, Kenny Huynh, Marko Tadjer, Tatyana Feygelson, Karl Hobart, Travis Anderson, Bradford Pate, Alan Jacobs, James Spencer Lundh, Mark Goorsky, Asif Khan, Patrick Hopkins, Samuel Graham","doi":"arxiv-2408.08076","DOIUrl":null,"url":null,"abstract":"This study investigates thermal transport across nanocrystalline\ndiamond/AlGaN interfaces, crucial for enhancing thermal management in\nAlGaN/AlGaN-based devices. Chemical vapor deposition growth of diamond directly\non AlGaN resulted in a disordered interface with a high thermal boundary\nresistance (TBR) of 20.6 m^2-K/GW. We employed sputtered carbide interlayers\n(e.g., $B_4C$, $SiC$, $B_4C/SiC$) to reduce thermal boundary resistance in\ndiamond/AlGaN interfaces. The carbide interlayers resulted in record-low\nthermal boundary resistance values of 3.4 and 3.7 m^2-K/GW for\nAl$_{0.65}$Ga$_{0.35}$N samples with $B_4C$ and $SiC$ interlayers,\nrespectively. STEM imaging of the interface reveals interlayer thicknesses\nbetween 1.7-2.5 nm, with an amorphous structure. Additionally, Fast-Fourier\nTransform (FFT) characterization of sections of the STEM images displayed sharp\ncrystalline fringes in the AlGaN layer, confirming it was properly protected\nfrom damage from hydrogen plasma during the diamond growth. In order to\naccurately measure the thermal boundary resistance we develop a hybrid\ntechnique, combining time-domain thermoreflectance and steady-state\nthermoreflectance fitting, offering superior sensitivity to buried thermal\nresistances. Our findings underscore the efficacy of interlayer engineering in\nenhancing thermal transport and demonstrate the importance of innovative\nmeasurement techniques in accurately characterizing complex thermal interfaces.\nThis study provides a foundation for future research in improving thermal\nproperties of semiconductor devices through interface engineering and advanced\nmeasurement methodologies.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates thermal transport across nanocrystalline diamond/AlGaN interfaces, crucial for enhancing thermal management in AlGaN/AlGaN-based devices. Chemical vapor deposition growth of diamond directly on AlGaN resulted in a disordered interface with a high thermal boundary resistance (TBR) of 20.6 m^2-K/GW. We employed sputtered carbide interlayers (e.g., $B_4C$, $SiC$, $B_4C/SiC$) to reduce thermal boundary resistance in diamond/AlGaN interfaces. The carbide interlayers resulted in record-low thermal boundary resistance values of 3.4 and 3.7 m^2-K/GW for Al$_{0.65}$Ga$_{0.35}$N samples with $B_4C$ and $SiC$ interlayers, respectively. STEM imaging of the interface reveals interlayer thicknesses between 1.7-2.5 nm, with an amorphous structure. Additionally, Fast-Fourier Transform (FFT) characterization of sections of the STEM images displayed sharp crystalline fringes in the AlGaN layer, confirming it was properly protected from damage from hydrogen plasma during the diamond growth. In order to accurately measure the thermal boundary resistance we develop a hybrid technique, combining time-domain thermoreflectance and steady-state thermoreflectance fitting, offering superior sensitivity to buried thermal resistances. Our findings underscore the efficacy of interlayer engineering in enhancing thermal transport and demonstrate the importance of innovative measurement techniques in accurately characterizing complex thermal interfaces. This study provides a foundation for future research in improving thermal properties of semiconductor devices through interface engineering and advanced measurement methodologies.
使用碳化物夹层实现金刚石-氮化镓界面的低热阻
这项研究探讨了纳米晶金刚石/氮化镓界面的热传输问题,这对于加强氮化镓/氮化镓基器件的热管理至关重要。金刚石直接在氮化铝上进行化学气相沉积生长,形成了无序界面,其热边界电阻(TBR)高达 20.6 m^2-K/GW。我们采用溅射碳化物夹层(例如:$B_4C$、$SiC$、$B_4C/SiC$)来降低金刚石/氮化铝界面的热边界电阻。碳化物夹层使带有$B_4C$和$SiC$夹层的Al$_{0.65}$Ga$_{0.35}$N样品的热边界电阻值分别达到创纪录的3.4和3.7 m^2-K/GW。界面的 STEM 成像显示,夹层厚度在 1.7-2.5 nm 之间,具有非晶结构。此外,对 STEM 图像截面进行的快速傅立叶变换 (FFT) 鉴定显示,AlGaN 层中存在锐利的结晶条纹,这证明在金刚石生长过程中,AlGaN 层受到了适当的保护,没有受到氢等离子体的破坏。为了精确测量热边界电阻,我们开发了一种混合技术,将时域热反射和稳态ethermoreflectance拟合结合起来,为埋藏热阻提供了更高的灵敏度。我们的研究结果强调了层间工程在增强热传输方面的功效,并证明了创新测量技术在准确表征复杂热界面方面的重要性。这项研究为今后通过界面工程和先进测量方法改善半导体器件热特性的研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信