Relativistic and Electron Correlation Effects in Static Dipole Polarizabilities for Main-Group Elements

YingXing Cheng
{"title":"Relativistic and Electron Correlation Effects in Static Dipole Polarizabilities for Main-Group Elements","authors":"YingXing Cheng","doi":"arxiv-2408.10513","DOIUrl":null,"url":null,"abstract":"In this study, I compute the static dipole polarizability of main-group\nelements using the finite-field method combined with relativistic\ncoupled-cluster and configuration interaction simulations. The computational\nresults closely align with the values recommended in the 2018 table of static\ndipole polarizabilities of neutral elements [Mol. Phys. 117, 1200 (2019)].\nAdditionally, I investigate the influence of relativistic effects and electron\ncorrelation on atomic dipole polarizabilities. Specifically, three types of\nrelativistic effects impacting dipole polarizabilities are studied:\nscalar-relativistic, spin-orbit coupling, and fully relativistic Dirac-Coulomb\neffects. The results indicate that scalar-relativistic effects are predominant\nfor atoms in Groups 1--2, with minimal influence from spin-orbit coupling\neffects. Conversely, for elements in Groups 13--18, scalar-relativistic effects\nare less significant, while spin-orbit coupling significantly affects elements\nstarting from the fourth row in Groups 13--14 and from the fifth row in Groups\n15--18. In each category of relativistic effects, the impact of electron\ncorrelation is evaluated. The results show that electron correlation\nsignificantly influences dipole polarizability calculations, particularly for\nGroups 1--2 and 13--14 atoms, but is less significant for Groups 15--18 atoms.\nThis study provides a comprehensive and consistent dataset of dipole\npolarizabilities and contributes to a systematic understanding of the roles of\nrelativistic and electron correlation effects in atomic dipole\npolarizabilities, serving as a valuable reference for future research.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, I compute the static dipole polarizability of main-group elements using the finite-field method combined with relativistic coupled-cluster and configuration interaction simulations. The computational results closely align with the values recommended in the 2018 table of static dipole polarizabilities of neutral elements [Mol. Phys. 117, 1200 (2019)]. Additionally, I investigate the influence of relativistic effects and electron correlation on atomic dipole polarizabilities. Specifically, three types of relativistic effects impacting dipole polarizabilities are studied: scalar-relativistic, spin-orbit coupling, and fully relativistic Dirac-Coulomb effects. The results indicate that scalar-relativistic effects are predominant for atoms in Groups 1--2, with minimal influence from spin-orbit coupling effects. Conversely, for elements in Groups 13--18, scalar-relativistic effects are less significant, while spin-orbit coupling significantly affects elements starting from the fourth row in Groups 13--14 and from the fifth row in Groups 15--18. In each category of relativistic effects, the impact of electron correlation is evaluated. The results show that electron correlation significantly influences dipole polarizability calculations, particularly for Groups 1--2 and 13--14 atoms, but is less significant for Groups 15--18 atoms. This study provides a comprehensive and consistent dataset of dipole polarizabilities and contributes to a systematic understanding of the roles of relativistic and electron correlation effects in atomic dipole polarizabilities, serving as a valuable reference for future research.
主族元素静态偶极极化率中的相对论效应和电子相关效应
在这项研究中,我使用有限场法结合相对论耦合簇和构型相互作用模拟计算了主族元素的静态偶极子极化率。计算结果与 2018 年中性元素静态偶极子极化率表[Mol. Phys. 117, 1200 (2019)]中推荐的值非常吻合。此外,我还研究了相对论效应和电子相关性对原子偶极子极化率的影响。具体来说,我研究了影响偶极极化率的三种相对论效应:标量相对论效应、自旋轨道耦合效应和完全相对论的狄拉克-库仑效应。结果表明,标量相对论效应对第 1--2 组原子的影响最大,而自旋轨道耦合效应的影响则微乎其微。相反,对于第 13--18 组中的元素,标量相对论效应不太明显,而自旋轨道耦合效应则对第 13-14 组中从第四行开始的元素和第 15-18 组中从第五行开始的元素有明显影响。在每一类相对论效应中,都评估了电子相关的影响。结果表明,电子相关对偶极极化率的计算有显著影响,特别是对第 1-2 组和第 13-14 组原子,但对第 15-18 组原子的影响较小。这项研究提供了一个全面而一致的偶极极化率数据集,有助于系统地理解相对论效应和电子相关效应在原子偶极极化率中的作用,为今后的研究提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信