Ab initio quantum dynamics as a scalable solution to the exoplanet opacity challenge: A case study of CO$_2$ in hydrogen atmosphere

Laurent Wiesenfeld, Prajwal Niraula, Julien de Wit, Nejmeddine Jaïdane, Iouli E. Gordon, Robert J. Hargreaves
{"title":"Ab initio quantum dynamics as a scalable solution to the exoplanet opacity challenge: A case study of CO$_2$ in hydrogen atmosphere","authors":"Laurent Wiesenfeld, Prajwal Niraula, Julien de Wit, Nejmeddine Jaïdane, Iouli E. Gordon, Robert J. Hargreaves","doi":"arxiv-2409.04439","DOIUrl":null,"url":null,"abstract":"Light-matter interactions lie at the heart of our exploration of exoplanetary\natmospheres. Interpreting data obtained by remote sensing is enabled by\nmeticulous, time- and resource-consuming work aiming at deepening our\nunderstanding of such interactions (i.e., opacity models). Recently,\n\\citet{Niraula2022} pointed out that due primarily to limitations on our\nmodeling of broadening and far-wing behaviors, opacity models needed a timely\nupdate for exoplanet exploration in the JWST era, and thus argued for a\nscalable approach. In this Letter, we introduce an end-to-end solution from ab\ninitio calculations to pressure broadening, and use the perturbation framework\nto identify the need for precision to a level of $\\sim$10\\%. We focus on the\nCO$_2$-H$_2$ system as CO$_2$ presents a key absorption feature for exoplanet\nresearch (primarily driven by the observation of gas giants) at $\\sim$4.3$\\mu$m\nand yet severely lack opacity data. We compute elastic and inelastic\ncross-sections for the collision of {ortho-}H$_2$ ~with CO$_2$, in the ground\nvibrational state, and at the coupled-channel fully converged level. For\nscattering energies above $\\sim$20~cm$^{-1}$, moderate precision\ninter-molecular potentials are indistinguishable from high precision ones in\ncross-sections. Our calculations agree with the currently available measurement\nwithin 7\\%, i.e., well beyond the precision requirements. Our proof-of-concept\nintroduces a computationally affordable way to compute full-dimensional\ninteraction potentials and scattering quantum dynamics with a precision\nsufficient to reduce the model-limited biases originating from the pressure\nbroadening and thus support instrument-limited science with JWST and future\nmissions.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Light-matter interactions lie at the heart of our exploration of exoplanetary atmospheres. Interpreting data obtained by remote sensing is enabled by meticulous, time- and resource-consuming work aiming at deepening our understanding of such interactions (i.e., opacity models). Recently, \citet{Niraula2022} pointed out that due primarily to limitations on our modeling of broadening and far-wing behaviors, opacity models needed a timely update for exoplanet exploration in the JWST era, and thus argued for a scalable approach. In this Letter, we introduce an end-to-end solution from ab initio calculations to pressure broadening, and use the perturbation framework to identify the need for precision to a level of $\sim$10\%. We focus on the CO$_2$-H$_2$ system as CO$_2$ presents a key absorption feature for exoplanet research (primarily driven by the observation of gas giants) at $\sim$4.3$\mu$m and yet severely lack opacity data. We compute elastic and inelastic cross-sections for the collision of {ortho-}H$_2$ ~with CO$_2$, in the ground vibrational state, and at the coupled-channel fully converged level. For scattering energies above $\sim$20~cm$^{-1}$, moderate precision inter-molecular potentials are indistinguishable from high precision ones in cross-sections. Our calculations agree with the currently available measurement within 7\%, i.e., well beyond the precision requirements. Our proof-of-concept introduces a computationally affordable way to compute full-dimensional interaction potentials and scattering quantum dynamics with a precision sufficient to reduce the model-limited biases originating from the pressure broadening and thus support instrument-limited science with JWST and future missions.
作为系外行星不透明度挑战的可扩展解决方案的 Ab initio 量子动力学:氢大气中 CO$_2$ 的案例研究
光-物质相互作用是我们探索系外行星大气层的核心。对遥感获得的数据进行解释需要进行细致的、耗费时间和资源的工作,目的是加深我们对这种相互作用(即不透明度模型)的理解。最近,{Niraula2022}指出,主要由于我们对加宽和远翼行为建模的限制,不透明度模型需要及时更新,以便在JWST时代进行系外行星探测,并因此主张采用可升级的方法。在这封信中,我们介绍了一种从非线性计算到压力展宽的端到端解决方案,并使用扰动框架来确定需要精确到$\sim$10\%的水平。我们重点研究了CO$_2$-H$_2$系统,因为CO$_2$是系外行星研究的一个关键吸收特征(主要由气体巨行星的观测驱动),其吸收率为$\sim$4.3$\mu$m,但严重缺乏不透明度数据。我们计算了{ortho-}H$_2$ ~与CO$_2$碰撞的弹性和非弹性截面,包括基振态和耦合信道完全收敛水平。当散射能量高于$\sim$20~cm$^{-1}$时,中等精度的分子间位势与高精度的交叉位势没有区别。我们的计算结果与目前可用的测量结果吻合度在 7% 以内,即远远超出了精度要求。我们的概念验证提出了一种计算上可承受的方法,来计算全维相互作用势和散射量子动力学,其精度足以减少源于压扩的模型限制偏差,从而支持JWST和未来发射的仪器限制科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信