Precision spectroscopy on $^9$Be overcomes limitations from nuclear structure

Stefan DickopfMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Bastian SikoraMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Annabelle KaiserMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Marius MüllerMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Stefan UlmerInstitute for Experimental Physics, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyUlmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan, Vladimir A. YerokhinMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Zoltán HarmanMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Christoph H. KeitelMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Andreas MooserMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Klaus BlaumMax Planck Institute for Nuclear Physics, Heidelberg, Germany
{"title":"Precision spectroscopy on $^9$Be overcomes limitations from nuclear structure","authors":"Stefan DickopfMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Bastian SikoraMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Annabelle KaiserMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Marius MüllerMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Stefan UlmerInstitute for Experimental Physics, Heinrich Heine University Düsseldorf, Düsseldorf, GermanyUlmer Fundamental Symmetries Laboratory, RIKEN, Saitama, Japan, Vladimir A. YerokhinMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Zoltán HarmanMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Christoph H. KeitelMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Andreas MooserMax Planck Institute for Nuclear Physics, Heidelberg, Germany, Klaus BlaumMax Planck Institute for Nuclear Physics, Heidelberg, Germany","doi":"arxiv-2409.06306","DOIUrl":null,"url":null,"abstract":"Many powerful tests of the Standard Model of particle physics and searches\nfor new physics with precision atomic spectroscopy are plagued by our lack of\nknowledge of nuclear properties. Ideally, such properties may be derived from\nprecise measurements of the most sensitive and theoretically best-understood\nobservables, often found in hydrogen-like systems. While these measurements are\nabundant for the electric properties of nuclei, they are scarce for the\nmagnetic properties, and precise experimental results are limited to the\nlightest of nuclei. Here, we focus on $^9$Be which offers the unique\npossibility to utilize comparisons between different charge states available\nfor high-precision spectroscopy in Penning traps to test theoretical\ncalculations typically obscured by nuclear structure. In particular, we perform\nthe first high-precision spectroscopy of the $1s$ hyperfine and Zeeman\nstructure in hydrogen-like $^9$Be$^{3+}$. We determine its effective Zemach\nradius with an uncertainty of $500$ ppm, and its bare nuclear magnetic moment\nwith an uncertainty of $0.6$ parts-per-billion (ppb) - uncertainties unmatched\nbeyond hydrogen. Moreover, we compare to measurements conducted on the\nthree-electron charge state $^9$Be$^{+}$, which, for the first time, enables\ntesting the calculation of multi-electron diamagnetic shielding effects of the\nnuclear magnetic moment at the ppb level. In addition, we test quantum\nelectrodynamics (QED) methods used for the calculation of the hyperfine\nsplitting. Our results serve as a crucial benchmark essential for transferring\nhigh-precision results of nuclear magnetic properties across different\nelectronic configurations.","PeriodicalId":501039,"journal":{"name":"arXiv - PHYS - Atomic Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many powerful tests of the Standard Model of particle physics and searches for new physics with precision atomic spectroscopy are plagued by our lack of knowledge of nuclear properties. Ideally, such properties may be derived from precise measurements of the most sensitive and theoretically best-understood observables, often found in hydrogen-like systems. While these measurements are abundant for the electric properties of nuclei, they are scarce for the magnetic properties, and precise experimental results are limited to the lightest of nuclei. Here, we focus on $^9$Be which offers the unique possibility to utilize comparisons between different charge states available for high-precision spectroscopy in Penning traps to test theoretical calculations typically obscured by nuclear structure. In particular, we perform the first high-precision spectroscopy of the $1s$ hyperfine and Zeeman structure in hydrogen-like $^9$Be$^{3+}$. We determine its effective Zemach radius with an uncertainty of $500$ ppm, and its bare nuclear magnetic moment with an uncertainty of $0.6$ parts-per-billion (ppb) - uncertainties unmatched beyond hydrogen. Moreover, we compare to measurements conducted on the three-electron charge state $^9$Be$^{+}$, which, for the first time, enables testing the calculation of multi-electron diamagnetic shielding effects of the nuclear magnetic moment at the ppb level. In addition, we test quantum electrodynamics (QED) methods used for the calculation of the hyperfine splitting. Our results serve as a crucial benchmark essential for transferring high-precision results of nuclear magnetic properties across different electronic configurations.
^9$Be的精密光谱学克服了核结构的限制
由于我们缺乏对核特性的了解,许多对粒子物理学标准模型的强大测试以及利用精密原子光谱学对新物理学的探索都受到了困扰。理想情况下,这些特性可以通过对最灵敏、理论上最容易理解的观测数据的精确测量得出,而这些观测数据通常存在于类氢系统中。虽然对原子核的电特性进行了大量测量,但对核磁特性的测量却很少,而且精确的实验结果仅限于最轻的原子核。在这里,我们聚焦于 $^9$Be,它提供了一种独特的可能性,即利用潘宁陷阱中高精度光谱所提供的不同电荷状态之间的比较,来检验通常被核结构所掩盖的理论计算。特别是,我们首次对类氢 $^9$Be$^{3+}$ 中的 1s$ 超正弦和泽曼结构进行了高精度光谱分析。我们测定了它的有效泽马赫半径,不确定度为 500 美元ppm,其裸核磁矩的不确定度为 0.6 美元ppb--这些不确定度都是氢以外无法比拟的。此外,我们还与对三电子电荷态 $^9$Be$^{+}$ 进行的测量进行了比较,首次在 ppb 水平上测试了核磁矩的多电子二磁屏蔽效应的计算。此外,我们还测试了用于计算超频分裂的量子电动力学(QED)方法。我们的研究结果是跨不同电子构型传递核磁特性高精度结果的重要基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信