Exploring the frontier of Polylactic Acid/Hydroxyapatite composites in bone regeneration and their revolutionary biomedical applications – A review

IF 2.3 3区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES
Francis T Omigbodun, Bankole I Oladapo, Norman Osa-uwagboe
{"title":"Exploring the frontier of Polylactic Acid/Hydroxyapatite composites in bone regeneration and their revolutionary biomedical applications – A review","authors":"Francis T Omigbodun, Bankole I Oladapo, Norman Osa-uwagboe","doi":"10.1177/07316844241278045","DOIUrl":null,"url":null,"abstract":"This review research investigates the potential of Polylactic Acid (PLA)/Hydroxyapatite (HA) composites in bone regeneration, focusing on the composites’ synthesis methods, mechanical properties, and biocompatibility. Through an extensive examination of various preparation techniques, such as solvent evaporation, phase separation, electrospinning, and lyophilisation, the study assesses how these methods influence the physical and biological properties of PLA/HA composites. Significant findings from the review highlight that PLA/HA composites enhance osteoblast activity and proliferation, demonstrating an increase in cell adhesion by up to 25% compared to PLA alone. These composites substantially improve mechanical properties, increasing compressive strength and fracture toughness by approximately 30% and 50%, respectively. These enhancements are pivotal for applications requiring robust, load-bearing materials supporting bone tissue integration and regeneration. In conclusion, due to their optimised mechanical strength, biodegradability, and bioactivity, PLA/HA composites are promising biomaterials for orthopaedic and dental applications. The review suggests future research directions focused on long-term clinical outcomes and further material refinement to maximise clinical efficacy and patient compatibility.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"40 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241278045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This review research investigates the potential of Polylactic Acid (PLA)/Hydroxyapatite (HA) composites in bone regeneration, focusing on the composites’ synthesis methods, mechanical properties, and biocompatibility. Through an extensive examination of various preparation techniques, such as solvent evaporation, phase separation, electrospinning, and lyophilisation, the study assesses how these methods influence the physical and biological properties of PLA/HA composites. Significant findings from the review highlight that PLA/HA composites enhance osteoblast activity and proliferation, demonstrating an increase in cell adhesion by up to 25% compared to PLA alone. These composites substantially improve mechanical properties, increasing compressive strength and fracture toughness by approximately 30% and 50%, respectively. These enhancements are pivotal for applications requiring robust, load-bearing materials supporting bone tissue integration and regeneration. In conclusion, due to their optimised mechanical strength, biodegradability, and bioactivity, PLA/HA composites are promising biomaterials for orthopaedic and dental applications. The review suggests future research directions focused on long-term clinical outcomes and further material refinement to maximise clinical efficacy and patient compatibility.
探索聚乳酸/羟基磷灰石复合材料在骨再生中的应用及其革命性生物医学应用--综述
本综述研究调查了聚乳酸(PLA)/羟基磷灰石(HA)复合材料在骨再生中的潜力,重点关注复合材料的合成方法、机械性能和生物相容性。通过对溶剂蒸发、相分离、电纺丝和冻干等各种制备技术的广泛研究,该研究评估了这些方法如何影响聚乳酸/HA 复合材料的物理和生物特性。综述中的重要发现突出表明,聚乳酸/羟基乙酸复合材料能增强成骨细胞的活性和增殖,与单独使用聚乳酸相比,细胞粘附力增加了 25%。这些复合材料大大提高了机械性能,抗压强度和断裂韧性分别提高了约 30% 和 50%。这些改进对于需要坚固、承重材料支持骨组织整合和再生的应用至关重要。总之,由于具有优化的机械强度、生物可降解性和生物活性,聚乳酸/羟基纤维复合材料在骨科和牙科应用中是很有前途的生物材料。综述提出了未来的研究方向,重点是长期临床结果和进一步改进材料,以最大限度地提高临床疗效和患者兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Reinforced Plastics and Composites
Journal of Reinforced Plastics and Composites 工程技术-材料科学:复合
CiteScore
5.40
自引率
6.50%
发文量
82
审稿时长
1.3 months
期刊介绍: The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in: Constituent materials: matrix materials, reinforcements and coatings. Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference. Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition. Processing and fabrication: There is increased interest among materials engineers in cost-effective processing. Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation. Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials. "The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信