{"title":"Study on the influence of sandwich glass structure on its impact resistance","authors":"Xiang Wang, Jingjing He, Jing Chen, Yunkuan Zhang, Jing Shi, Xiangrui Wei","doi":"10.1177/07316844241273050","DOIUrl":null,"url":null,"abstract":"In view of the impact resistance of PVB laminated glass, PVB laminated glass of 0.76 mm and 1.52 mm thickness was selected in this paper to form five different types of “2 + 1” and “3 + 2” sandwich glass, and hydrogen gun flying plate variable speed impact combined with CT scanning and three-dimensional reconstruction technology was adopted. The failure mode and crack expansion of glass specimens after impact are studied. The influence of different factors (sandwich thickness, sandwich number, and sandwich position) on the impact resistance of explosion-proof glass is analyzed comprehensively. The results show that increasing the number and thickness of sandwiches can reduce the widening and expansion of microcracks, decrease crack connectivity, and effectively resist plastic damage to glass specimens. The appropriate position of the sandwich helps to improve the load-bearing capacity of the glass specimens. Therefore, the thickness of the sandwich, the number of sandwiches, and the position of the sandwich all have an impact on the impact load capacity and crack development of laminated glass. In addition, the impact resistance of laminated glass is positively correlated with the thickness of the PVB sandwich but shows different damage sensitivity to different impact velocities, with the best impact resistance under its medium velocity condition. This paper provides a significant theoretical foundation for establishing selection criteria for explosion-proof glass by examining the factors that influence its impact resistance, thereby enhancing its safety performance.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241273050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the impact resistance of PVB laminated glass, PVB laminated glass of 0.76 mm and 1.52 mm thickness was selected in this paper to form five different types of “2 + 1” and “3 + 2” sandwich glass, and hydrogen gun flying plate variable speed impact combined with CT scanning and three-dimensional reconstruction technology was adopted. The failure mode and crack expansion of glass specimens after impact are studied. The influence of different factors (sandwich thickness, sandwich number, and sandwich position) on the impact resistance of explosion-proof glass is analyzed comprehensively. The results show that increasing the number and thickness of sandwiches can reduce the widening and expansion of microcracks, decrease crack connectivity, and effectively resist plastic damage to glass specimens. The appropriate position of the sandwich helps to improve the load-bearing capacity of the glass specimens. Therefore, the thickness of the sandwich, the number of sandwiches, and the position of the sandwich all have an impact on the impact load capacity and crack development of laminated glass. In addition, the impact resistance of laminated glass is positively correlated with the thickness of the PVB sandwich but shows different damage sensitivity to different impact velocities, with the best impact resistance under its medium velocity condition. This paper provides a significant theoretical foundation for establishing selection criteria for explosion-proof glass by examining the factors that influence its impact resistance, thereby enhancing its safety performance.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).