{"title":"Inference for Partially Linear Quantile Regression Models in Ultrahigh Dimension","authors":"Hongwei Shi, Weichao Yang, Niwen Zhou, Xu Guo","doi":"10.1007/s40304-023-00389-9","DOIUrl":null,"url":null,"abstract":"<p>Conditional quantile regression provides a useful statistical tool for modeling and inferring the relationship between the response and covariates in the heterogeneous data. In this paper, we develop a novel testing procedure for the ultrahigh-dimensional partially linear quantile regression model to investigate the significance of ultrahigh-dimensional interested covariates in the presence of ultrahigh-dimensional nuisance covariates. The proposed test statistic is an <span>\\(L_2\\)</span>-type statistic. We estimate the nonparametric component by some flexible machine learners to handle the complexity and ultrahigh dimensionality of considered models. We establish the asymptotic normality of the proposed test statistic under the null and local alternative hypotheses. A screening-based testing procedure is further provided to make our test more powerful in practice under the ultrahigh-dimensional regime. We evaluate the finite-sample performance of the proposed method via extensive simulation studies. A real application to a breast cancer dataset is presented to illustrate the proposed method.</p>","PeriodicalId":10575,"journal":{"name":"Communications in Mathematics and Statistics","volume":"86 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00389-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Conditional quantile regression provides a useful statistical tool for modeling and inferring the relationship between the response and covariates in the heterogeneous data. In this paper, we develop a novel testing procedure for the ultrahigh-dimensional partially linear quantile regression model to investigate the significance of ultrahigh-dimensional interested covariates in the presence of ultrahigh-dimensional nuisance covariates. The proposed test statistic is an \(L_2\)-type statistic. We estimate the nonparametric component by some flexible machine learners to handle the complexity and ultrahigh dimensionality of considered models. We establish the asymptotic normality of the proposed test statistic under the null and local alternative hypotheses. A screening-based testing procedure is further provided to make our test more powerful in practice under the ultrahigh-dimensional regime. We evaluate the finite-sample performance of the proposed method via extensive simulation studies. A real application to a breast cancer dataset is presented to illustrate the proposed method.
期刊介绍:
Communications in Mathematics and Statistics is an international journal published by Springer-Verlag in collaboration with the School of Mathematical Sciences, University of Science and Technology of China (USTC). The journal will be committed to publish high level original peer reviewed research papers in various areas of mathematical sciences, including pure mathematics, applied mathematics, computational mathematics, and probability and statistics. Typically one volume is published each year, and each volume consists of four issues.