A Procedure g5anchor to Anchor $γ_5$ in Feynman Diagrams for the Standard Model

Long Chen
{"title":"A Procedure g5anchor to Anchor $γ_5$ in Feynman Diagrams for the Standard Model","authors":"Long Chen","doi":"arxiv-2409.08099","DOIUrl":null,"url":null,"abstract":"We present a procedure g5anchor to anchor $\\gamma_5$ in the definition of a\nDirac trace with $\\gamma_5$ in Dimensional Regularization (DR) in Feynman\ndiagrams for the Standard Model, based on a recent revision of the works by\nKreimer, Gottlieb and Donohue. For each closed fermion chain with an odd number\nof primitive (i.e.~not-yet-clearly-defined) $\\gamma_5$ in a given Feynman\ndiagram, g5anchor returns a definite set of anchor points for $\\gamma_5$, in\nterms of pairs of ordered fermion propagators; at each of these $\\gamma_5$\nanchor points a fixed expression in terms of the Levi-Civita tensor and\nelementary Dirac matrices will be inserted together with a sign determined by\nanticommutatively shifting all $\\gamma_5$ from their original places (dictated\nby the Feynman rules) to this anchor point. The defining expressions for the\ncyclic $\\gamma_5$-odd Dirac traces in DR associated with closed fermion chains\nin amplitudes, or more generally squared amplitudes, thus follow from this\nprocedure, where the Levi-Civita tensors are not necessarily treated strictly\nin 4-dimensions. We propose utilizing this definition in practical perturbative\ncalculations in the Standard Model at least to three-loop orders with the\ncurrent implementation, and maybe to higher loop orders in absence of Yukawa\ncouplings to Higgs fields. Certain limitations and modifications of the KKS\nand/or the Kreimer scheme are addressed.","PeriodicalId":501339,"journal":{"name":"arXiv - PHYS - High Energy Physics - Theory","volume":"384 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a procedure g5anchor to anchor $\gamma_5$ in the definition of a Dirac trace with $\gamma_5$ in Dimensional Regularization (DR) in Feynman diagrams for the Standard Model, based on a recent revision of the works by Kreimer, Gottlieb and Donohue. For each closed fermion chain with an odd number of primitive (i.e.~not-yet-clearly-defined) $\gamma_5$ in a given Feynman diagram, g5anchor returns a definite set of anchor points for $\gamma_5$, in terms of pairs of ordered fermion propagators; at each of these $\gamma_5$ anchor points a fixed expression in terms of the Levi-Civita tensor and elementary Dirac matrices will be inserted together with a sign determined by anticommutatively shifting all $\gamma_5$ from their original places (dictated by the Feynman rules) to this anchor point. The defining expressions for the cyclic $\gamma_5$-odd Dirac traces in DR associated with closed fermion chains in amplitudes, or more generally squared amplitudes, thus follow from this procedure, where the Levi-Civita tensors are not necessarily treated strictly in 4-dimensions. We propose utilizing this definition in practical perturbative calculations in the Standard Model at least to three-loop orders with the current implementation, and maybe to higher loop orders in absence of Yukawa couplings to Higgs fields. Certain limitations and modifications of the KKS and/or the Kreimer scheme are addressed.
在标准模型费曼图中锚定 $γ_5$ 的程序 g5anchor
我们基于对克里默(Kreimer)、戈特利布(Gottlieb)和多诺霍(Donohue)的最新研究成果的修订,在标准模型费曼迪亚图中的维正则(DR)定义中,提出了一种在具有$\gamma_5$的迪拉克迹(Dirac trace)中锚定$\gamma_5$的程序g5anchor。对于每个具有奇数个基元的封闭费米子链(即~g5anchor会返回一组确定的$\gamma_5$锚点,这些锚点是有序费米子传播者对;在这些 $\gamma_5$ 锚点中的每一个点上,都会插入列维-奇维塔张量和基本狄拉克矩阵的一个固定表达式,以及一个符号,这个符号是通过将所有 $\gamma_5$ 从它们原来的位置(由费曼规则决定)逐次移动到这个锚点而确定的。因此,DR中与封闭费米子链振幅或更一般的平方振幅相关的循环$\gamma_5$-odd狄拉克迹线的定义表达式就来自这一过程,其中Levi-Civita张量并不一定在4维空间中得到严格处理。我们建议在标准模型的实际微扰计算中使用这一定义,按照目前的实现,至少可以达到三环阶,如果没有希格斯场的尤卡耦合,也许可以达到更高的环阶。我们还讨论了 KKS 和/或 Kreimer 方案的某些局限和修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信