Constructing an Interpretable Deep Denoiser by Unrolling Graph Laplacian Regularizer

Seyed Alireza Hosseini, Tam Thuc Do, Gene Cheung, Yuichi Tanaka
{"title":"Constructing an Interpretable Deep Denoiser by Unrolling Graph Laplacian Regularizer","authors":"Seyed Alireza Hosseini, Tam Thuc Do, Gene Cheung, Yuichi Tanaka","doi":"arxiv-2409.06676","DOIUrl":null,"url":null,"abstract":"An image denoiser can be used for a wide range of restoration problems via\nthe Plug-and-Play (PnP) architecture. In this paper, we propose a general\nframework to build an interpretable graph-based deep denoiser (GDD) by\nunrolling a solution to a maximum a posteriori (MAP) problem equipped with a\ngraph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem\nshowing that any (pseudo-)linear denoiser $\\boldsymbol \\Psi$, under mild\nconditions, can be mapped to a solution of a MAP denoising problem regularized\nusing GLR, we first initialize a graph Laplacian matrix $\\mathbf L$ via\ntruncated Taylor Series Expansion (TSE) of $\\boldsymbol \\Psi^{-1}$. Then, we\ncompute the MAP linear system solution by unrolling iterations of the conjugate\ngradient (CG) algorithm into a sequence of neural layers as a feed-forward\nnetwork -- one that is amenable to parameter tuning. The resulting GDD network\nis \"graph-interpretable\", low in parameter count, and easy to initialize thanks\nto $\\mathbf L$ derived from a known well-performing denoiser $\\boldsymbol\n\\Psi$. Experimental results show that GDD achieves competitive image denoising\nperformance compared to competitors, but employing far fewer parameters, and is\nmore robust to covariate shift.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An image denoiser can be used for a wide range of restoration problems via the Plug-and-Play (PnP) architecture. In this paper, we propose a general framework to build an interpretable graph-based deep denoiser (GDD) by unrolling a solution to a maximum a posteriori (MAP) problem equipped with a graph Laplacian regularizer (GLR) as signal prior. Leveraging a recent theorem showing that any (pseudo-)linear denoiser $\boldsymbol \Psi$, under mild conditions, can be mapped to a solution of a MAP denoising problem regularized using GLR, we first initialize a graph Laplacian matrix $\mathbf L$ via truncated Taylor Series Expansion (TSE) of $\boldsymbol \Psi^{-1}$. Then, we compute the MAP linear system solution by unrolling iterations of the conjugate gradient (CG) algorithm into a sequence of neural layers as a feed-forward network -- one that is amenable to parameter tuning. The resulting GDD network is "graph-interpretable", low in parameter count, and easy to initialize thanks to $\mathbf L$ derived from a known well-performing denoiser $\boldsymbol \Psi$. Experimental results show that GDD achieves competitive image denoising performance compared to competitors, but employing far fewer parameters, and is more robust to covariate shift.
通过展开图拉普拉奇正则构建可解释的深度去噪器
图像去噪器可通过即插即用(PnP)架构用于各种修复问题。在本文中,我们提出了一个通用框架,通过对最大后验(MAP)问题的解进行滚动,并将图谱拉普拉奇正则化器(GLR)作为信号先验来构建可解释的基于图谱的深度去噪器(GDD)。最近的一个定理表明,在温和条件下,任何(伪)线性去噪器$\boldsymbol \Psi$都可以映射为使用GLR正则化的MAP去噪问题的解,利用该定理,我们首先初始化了$\boldsymbol \Psi^{-1}$的图拉普拉斯矩阵$\mathbf L$ viatruncated Taylor Series Expansion (TSE)。然后,我们通过将共轭梯度(CG)算法的迭代展开到神经层序列中来计算 MAP 线性系统解,将其作为一个前馈网络--一个可以进行参数调整的网络。由此产生的GDD网络是 "可解释图 "的,参数数量少,并且易于初始化,这要归功于从已知性能良好的去噪器$\boldsymbol\Psi$中提取的$\mathbf L$。实验结果表明,与竞争者相比,GDD能实现具有竞争力的图像去噪性能,但使用的参数要少得多,而且对协变量偏移具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信